Skip to main content
Log in

Modeling, simulation and implementation of circuit elements in an open-source tool set on the FPAA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An open-source simulator to design and implement circuits and systems, replicating the results from the Field Programmable Analog Array (FPAA) is presented here. The fundamental components like the transistors, amplifiers and floating gate devices have been modeled based on the EKV model with minimal parameters. Systems including continuous-time filters and the analog front-end of a speech processing system have been built from these basic components and the simulation results and the data from the FPAA are shown. The simulated results are in close agreement to the experimental measurements obtained from the same circuits compiled on the FPAA fabricated in a 350 nm process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. [19], Chap. 5, pp. 68.

References

  1. George, S., Kim, S., Shah, S., Hasler, J., Collins, M., Adil, F., et al. (2016). A programmable and configurable mixed-mode FPAA soc. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(6), 2253–2261.

    Google Scholar 

  2. Michell, G. D., & Gupta, R. K. (1997). Hardware/software co-design. Proceedings of the IEEE, 85(3), 349–365.

    Article  Google Scholar 

  3. Collins, M., Hasler, J., & George, S. (2016). An open-source tool set enabling analog-digital-software co-design. Journal of Low Power Electronics and Applications, 6(1), 3.

    Article  Google Scholar 

  4. Schlottmann, C. R., & Hasler, J. (2014). High-level modeling of analog computational elements for signal processing applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9), 1945–1953.

    Article  Google Scholar 

  5. Foty, D. P. (1997). MOSFET modeling with SPICE: Principles and practice. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  6. Cheng, Y., & Hu, C. (2002). MOSFET modeling & BSIM3 user guide. Berlin: Springer.

    Google Scholar 

  7. Tsividis, Y. P., & Suyama, K. (1994). MOSFET modeling for analog circuit cad: problems and prospects. IEEE Journal of Solid-State Circuits, 29(3), 210–216.

    Article  Google Scholar 

  8. Guerra-Gómez, I., Mcconaghy, T., & Tlelo-Cuautle, E. (2013). Operating-point driven formulation for analog computer-aided design. Analog Integrated Circuits and Signal Processing, 74(2), 345–353.

    Article  Google Scholar 

  9. Hasler, J., Shah, S., Kim, S., Lal, I. K., & Collins, M. (2016). Remote system setup using large-scale field programmable analog arrays (FPAA) to enabling wide accessibility of configurable devices. Journal of Low Power Electronics and Applications, 6(3), 14.

    Article  Google Scholar 

  10. Schlottmann, C., Petre, C., & Hasler, P. E. (2012). A high-level simulink-based tool for FPAA configuration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 10–18.

    Article  Google Scholar 

  11. Campbell, S. L., Chancelier, J.-P., & Nikoukhah, R. (2006). Modeling and simulation in Scilab/Scicos. New York, NY: Springer.

    MATH  Google Scholar 

  12. Lam, K.C.A., & Zwolinski, M. (June 2013). Circuit simulation using state space equations. In 2013 9th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (pp. 177–180).

  13. Tiller, M. (2001). Introduction to physical modeling with modelica. Berlin: Springer.

    Book  Google Scholar 

  14. Enz, C. C., Krummenacher, F., & Vittoz, E. A. (1995). An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 8(1), 83–114.

    Article  Google Scholar 

  15. Low, A., & Hasler, P. (1999). Cadence-based simulation of floating-gate circuits using the EKV model. In 42nd Midwest Symposium on Circuits and Systems (vol. 1, pp. 141–144).

  16. Hasler, P. E. (2005). Floating-gate devices, circuits, and systems, invited. In Proceedings of the 5th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC 2005), 20-24 July 2004, Banff, Alberta, Canada (pp. 482–487).

  17. Tsividis, Y. P. (1987). Operation and modelling of the MOS transistor. New York, NY: McGraw-Hill.

    Google Scholar 

  18. Odame, K. M., & Hasler, P. E. (2009). Theory and design of OTA-C oscillators with native amplitude limiting. IEEE Transactions on Circuits and Systems, 56–I(1), 40–50.

  19. Mead, C. (1989). Analog VLSI and neural systems. Bostan, MA: Addison-Wesley Longman Publishing Co., Inc.

    MATH  Google Scholar 

  20. Kim, S., Hasler, J., & George, S. (2016). Integrated floating-gate programming environment for system-level ics. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 99, 1–9.

    Article  Google Scholar 

  21. Schlottmann, C., Abramson, D. N., & Hasler, P. E. (2012). A MITE-based translinear FPAA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 1–9.

    Article  Google Scholar 

  22. Graham, D. W., Farquhar, E., Degnan, B., Gordon, C., & Hasler, P. (2007). Indirect programming of floating-gate transistors. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(5), 951–963.

    Article  Google Scholar 

  23. Chawla, R., Adil, F., Serrano, G. J., & Hasler, P. E. (2007). Programmable g\({}_{\text{m}}\)- C filters using floating-gate operational transconductance amplifiers. IEEE Transactions on Circuits and Systems, 54–I(3), 481–491.

  24. Graham, D. W., Hasler, P. E., Chawla, R., & Smith, P. D. (2007). A low-power programmable bandpass filter section for higher order filter applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1165–1176.

    Article  Google Scholar 

  25. Ramakrishnan, S., Basu, A., Chiu, L. K., Hasler, J., Anderson, D., & Brink, S. (2014). Speech processing on a reconfigurable analog platform. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 430–433.

    Article  Google Scholar 

  26. Ngspice Web Site. http://ngspice.sourceforge.net/.

  27. Nenzi, P., & Vogt, H. Ngspice users manual. http://ngspice.sourceforge.net/docs/ngspice26-manual.pdf.

  28. EKV Website, http://ekv.epfl.ch/.

  29. Degnan, B. (2013). Temperature robust programmable subthreshold circuits through a balanced force approach. Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, May 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishwarya Natarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, A., Hasler, J. Modeling, simulation and implementation of circuit elements in an open-source tool set on the FPAA. Analog Integr Circ Sig Process 91, 119–130 (2017). https://doi.org/10.1007/s10470-016-0914-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0914-y

Keywords

Navigation