Skip to main content
Log in

A design of 50/150/200 kbps, low power FSK transceiver using phase-locked loop with programmable loop bandwidth and integrated SPDT for IEEE 802.15.4g application

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 50/150/200 kbps, low power transceiver with one-point modulation and integrated single pole double throw (SPDT) switch for IEEE 802.15.4g application. To ensure that the proposed low power transceiver can operate at a multi data rate, multi data-rate (50/150/200 kbps) frequency shift keying (FSK) modulation is implemented using a phase-locked loop (PLL) with a programmable loop bandwidth. The bandwidth switching scheme is combined with the programmable loop bandwidth to support the high data rate in the PLL of the transmitter. In the receiver, the SPDT switch is integrated to share the antenna and matching network between the transmitter and receiver, thus minimizing the system cost. Also the active-RC band pass filter with the programmable bandwidth is designed to support the data rates of 50, 150, and 200 kbps. The capacitors in each data rate are shared efficiently to minimize the die area. The FSK transmitter is implemented using 0.18 μm 1-poly 6-metal complementary metal-oxide semiconductor technology. The die area of the transceiver is 4.0 mm2. The power consumption of the transmitter and receiver are 54 and 25 mW, respectively, when the output power level of the transmitter is +10.17 dBm at 1.8 V supply voltage. The phase noise of the PLL output at 1.8462 GHz is −118.13 dBc/Hz with a 1 MHz offset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. IEEE Draft Standard for Information technology. (2010). Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). P802.15.4g/D2.

  2. Perrott, M. H., Tewksbury, T. L. III, & Sodini, C. G. (1997). A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation. IEEE Journal of Solid-State Circuits, 32(12), 2048–2060.

    Article  Google Scholar 

  3. Staszewski, R. B., & Balsara, P. T. (2006). All-digital frequency synthesizer in deep-submicron CMOS. Hoboken: Wiley.

    Book  Google Scholar 

  4. Xu, L., Stadius, K., & Ryynanen, J. (2012). An all-digital PLL frequency synthesizer with an improved phase digitization approach and an optimized frequency calibration technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(11), 2481–2494.

    Article  MathSciNet  Google Scholar 

  5. Chen, J., Rong, L., Jonsson, F., Yang, G., & Zheng, L.-R. (2012). The design of all-digital polar transmitter based on ADPLL and phase synchronized ΔΣmodulator. IEEE Journal of Solid-State Circuits, 47(5), 1154–1164.

    Article  Google Scholar 

  6. Lee, S. S., Choi, S. S., Kim, J. Y., & Lee, K. Y. (September 2013). An IEEE 802.15.4g SUN FSK RF CMOS transceiver for smart grid and CEs. IEEE Third International Conference on Consumer Electronics Berlin (ICCE-Berlin), 2013. ICCE Berlin 2013 (pp. 89–92).

  7. Kim, Hongjin, Kim, So Young, & Lee, Kang-Yoon. (2013). Low power FSK transmitter using all-digital PLL for IEEE 802.15.4g application. Analog Integrated Circuits and Signal Processing, 74(3), 599–612.

    Article  MATH  Google Scholar 

  8. Dudek, P., Szczepanski, S., & Hatfield, J. V. (2000). A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE Journal of Solid-State Circuits, 35(2), 240–247.

    Article  Google Scholar 

  9. Jin, Y., & Nguyen, C. (2007). Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-um CMOS T/R switch. IEEE Transactions on Microwave Theory Techniques, 55(1), 30–36.

    Article  Google Scholar 

  10. Tsukamoto, S., Dedic, I., Endo, T., Kikuta, K., Goto, K., & Kobayashi, O. (1996). A CMOS 6-b, 200 M sample/s, 3 V-supply A/D converter for a PRML read channel LSI. IEEE Journal of Solid-State Circuits, 31(11), 1831–1836.

    Article  Google Scholar 

  11. Raja, M. K., Chen, X. Y., Lei, D., Bin, Z., Yeung, & B. C., Xiaojun, Y. (2010). A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-µm CMOS. In Solid State Circuits Conference (A-SSCC), 2010 IEEE Asian (pp. 8–10).

  12. Maeda, T., Matsuno, N., Hori, S., Yamase, T., Tokairin, T., Yanagisawa, K., et al. (2006). A low-power dual-band triple-mode WLAN CMOS transceiver. IEEE Journal Of Solid-State Circuits, 41(11), 2481–2490.

    Article  Google Scholar 

  13. Ferriss, M. A., & Flynn, M. P. (2008). A 14 mW fractional-N PLL modulator with a digital phase detector and frequency switching scheme. IEEE Journal of Solid-State Circuits, 43(11), 2464–2471.

    Article  Google Scholar 

  14. Flatscher, M., Dielacher, M., Herndl, T., Lentsch, T., Matischek, R., Prainsack, J., et al. (2010). A bulk acoustic wave (BAW) based transceiver for an in-tire-pressure monitoring sensor node. IEEE Journal of Solid-State Circuits, 45(1), 167–177.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2010114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Yoon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, D., Lee, J. et al. A design of 50/150/200 kbps, low power FSK transceiver using phase-locked loop with programmable loop bandwidth and integrated SPDT for IEEE 802.15.4g application. Analog Integr Circ Sig Process 84, 261–282 (2015). https://doi.org/10.1007/s10470-015-0552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0552-9

Keywords

Navigation