Skip to main content
Log in

A Power-Efficient Configurable FSK–OOK Transmitter with Scalable Data Rate for Wireless Medical Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a 922 MHz power-efficient configurable frequency-shift keying–on–off keying (FSK–OOK) phase-locked loop (PLL)-based transmitter. The proposed transmitter works as a multimode structure with configurable data rate and output power. In OOK modulation, by duty cycle adjustment of input data and producing return-to-zero data (RZ-data) by a simple circuit, the data rate can be scaled with power consumption. This implies that any desired level of output power can be transmitted with different power consumption according to the power budget. The transmitter benefits from a new phase frequency detector, an improved charge pump and a low-power voltage-controlled oscillator. The proposed structure represents data rate of 0.24–2.4 Mb/s in OOK mode and 1.8 Mb/s in FSK mode, and it can deliver output power level from − 19.71 to 0.53 dBm. The efficiency of the transmitter at RZ–OOK modulation with data rate of 2.4 Mb/s and output power of 0.53 dBm is 57.25%. Also, the efficiency of transmitter in FSK modulation is 22.1%. The post-layout simulation results in 0.18 µm RF CMOS process are obtained and verify the effectiveness of the proposed circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Abdelhalim, L. Kokarovtseva, J.L.P. Velazquez, R. Genov, 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J. Solid-State Circ. 48(10), 2478–2493 (2013)

    Article  Google Scholar 

  2. T. Azadmousavi, E.N. Aghdam, Adaptive body biasing circuit for reliability and variability compensation of a low power RF amplifier. IEEE Trans. Dev. Mater. Reliab. 19(1), 226–232 (2019)

    Article  Google Scholar 

  3. T. Azadmousavi, E.N. Aghdam, A low power current-reuse LC-VCO with an adaptive body-biasing technique. AEU-Int J. Electron. Commun. 89, 56–61 (2018)

    Article  Google Scholar 

  4. T. Azadmousavi, M. Azadbakht, E.N. Aghdam, J. Frounchi, A novel zero dead zone PFD and efficient CP for PLL applications. Analog Integr. Circ. Signal Process. 95(1), 83–91 (2018)

    Article  Google Scholar 

  5. M. Azin, D.J. Guggenmos, S. Barbay, R.J. Nudo, P. Mohseni, A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface. IEEE J. Solid-State Circ. 46(4), 731–745 (2011)

    Article  Google Scholar 

  6. A. Ba, M. Vidojkovic, K. Kanda, N.F. Kiyani, M. Lont, X. Huang, X. Wang, C. Zhou, Y.-H. Liu, M. Ding, A 0.33 nJ/bit IEEE802. 15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inf. 19(3), 920–929 (2015)

    Article  Google Scholar 

  7. R. Bashirullah, Wireless implants. IEEE Microw. Mag. 11(7), S14–S23 (2010)

    Article  Google Scholar 

  8. M.S. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312–321 (2009)

    Article  Google Scholar 

  9. W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, A fully integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control. IEEE J. Solid-State Circ. 49(1), 232–247 (2013)

    Article  Google Scholar 

  10. S. Cho, A.P. Chadrakasan, A 6.5-GHz energy-efficient BFSK modulator for wireless sensor applications. IEEE J. Solid-State Circ. 39(5), 731–739 (2004)

    Article  Google Scholar 

  11. J. Dong, H. Jiang, K. Yang, Z. Weng, F. Li, J. Wei, Y. Ning, X. Chen, Z. Wang, A wireless body sound sensor with a dedicated compact chipset. Circuits Syst. Signal Process. 36(6), 2341–2359 (2017)

    Article  MathSciNet  Google Scholar 

  12. O.Z. Gall, C. Meng, H. Bhamra, H. Mei, S.W. John, P.P. Irazoqui, A batteryless energy harvesting storage system for implantable medical devices demonstrated in situ. Circuits Syst. Signal Process. 38(3), 1360–1373 (2019)

    Article  Google Scholar 

  13. R. Harrison, P. Watkins, R. Kier, R. Lovejoy, D. Black, R. Normann, F. Solzbacher, A low-power integrated circuit for a wireless 100-electrode neural recording system, in 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers 2006 (IEEE), pp. 2258–2267

  14. S. Heinen, K. Hadjizada, U. Matter, W. Geppert, V. Thomas, S. Weber, S. Beyer, J. Fenk, E. Matschke, A 2.7 V 2.5 GHz bipolar chipset for digital wireless communication, in 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers 1997 (IEEE), pp. 306–307

  15. M.S. Jahan, J. Langford, J. Holleman, A low-power FSK/OOK transmitter for 915 MHz ISM band, in 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 2015 (IEEE), pp. 163–166

  16. H. Kassiri, R. Pazhouhandeh, N. Soltani, M.T. Salam, P. Carlen, J.L.P. Velazquez, R. Genov, 27.3 All-wireless 64-channel 0.013 mm 2/ch closed-loop neurostimulator with rail-to-rail DC offset removal, in 2017 IEEE International Solid-State Circuits Conference (ISSCC) 2017 (IEEE), pp. 452–453

  17. S.J. Kim, C.S. Park, S.-G. Lee, A 2.4-GHz ternary sequence spread spectrum OOK transceiver for reliable and ultra-low power sensor network applications. IEEE Trans. Circuits Syst. I Regul. Papers 64(11), 2976–2987 (2017)

    Article  MathSciNet  Google Scholar 

  18. S.B. Lee, H.-M. Lee, M. Kiani, U.-M. Jow, M. Ghovanloo, An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circuits Syst. 4(6), 360–371 (2010)

    Article  Google Scholar 

  19. J. McDonald, S. Dean, D. Niewolny, D. Garcia, N. Chhabra, L. Chang, Integrated circuits for implantable medical devices. Document Number: ICIMDOVWP REV0, Freescale (2011)

  20. A. Moradi, M. Sawan, An energy-efficient high data-rate 915 MHz FSK wireless transmitter for medical applications. Analog Integr. Circ. Signal Process. 83(1), 85–94 (2015)

    Article  Google Scholar 

  21. A. Paidimarri, P.M. Nadeau, P.P. Mercier, A.P. Chandrakasan, A 2.4 GHz multi-channel FBAR-based transmitter with an integrated pulse-shaping power amplifier. IEEE J. Solid-State Circ. 48(4), 1042–1054 (2013)

    Article  Google Scholar 

  22. J. Pandey, B.P. Otis, A Sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication. IEEE J. Solid-State Circ. 46(5), 1049–1058 (2011)

    Article  Google Scholar 

  23. V. Peiris, C. Arm, S. Bories, S. Cserveny, F. Giroud, P. Graber, S. Gyger, E. Le Roux, T. Melly, M. Moser, A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18/spl mu/m CMOS, in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005. 2005 (IEEE), pp. 258–259

  24. P. Quinlan, P. Crowley, M. Chanca, S. Hudson, B. Hunt, K. Mulvaney, G. Retz, C.E. O’Sullivan, P. Walsh, A multimode 0.3-200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-/spl mu/m CMOS. IEEE J. Solid-State Circ. 39(12), 2297–2310 (2004)

  25. B. Razavi, RF transmitter architectures and circuits. In: Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No. 99CH36327) 1999 (IEEE) pp. 197–204

  26. M. Stoopman, K. Philips, W.A. Serdijn, An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Trans. Microw. Theory Tech. 65(7), 2399–2408 (2017)

    Article  Google Scholar 

  27. M. Taghivand, K. Aggarwal, Y. Rajavi, A.S. Poon, An energy harvesting 2 × 2 60 GHz transceiver with scalable data rate of 38–2450 Mb/s for near-range communication. IEEE J. Solid-State Circ. 50(8), 1889–1902 (2015)

    Article  Google Scholar 

  28. J.G. Webster, Medical Instrumentation: Application and Design (Wiley, Hoboken, 2009)

    Google Scholar 

  29. X.P. Yu, M.A. Do, W.M. Lim, K.S. Yeo, J.-G. Ma, Design and optimization of the extended true single-phase clock-based prescaler. IEEE Trans. Microw. Theory Tech. 54(11), 3828–3835 (2006)

    Article  Google Scholar 

  30. J. Yuan, C. Svensson, High-speed CMOS circuit technique. Ieee J Solid-St Circ 24(1), 62–70 (1989)

    Article  Google Scholar 

  31. J. Zhu, L. Wu, X. Zhang, C. Jia, C. Zhang, A low-power 433 MHz transmitter for battery-less Tire Pressure Monitoring System, in 2011 9th IEEE International Conference on ASIC 2011 (IEEE), pp. 184–187

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Azadmousavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadmousavi, T., Najafi Aghdam, E. & Frounchi, J. A Power-Efficient Configurable FSK–OOK Transmitter with Scalable Data Rate for Wireless Medical Applications. Circuits Syst Signal Process 39, 2776–2795 (2020). https://doi.org/10.1007/s00034-019-01293-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01293-w

Keywords

Navigation