Skip to main content
Log in

Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and asymptotic distribution results for the single-index parameter estimators. Under a log-Gamma model, the sensitivity to anomalous observations is studied using the empirical influence curve. We also discuss a robust K-fold cross-validation procedure to select the smoothing parameters. A numerical study carried on with errors following a log-Gamma model and for contaminated schemes shows the good robustness properties of the proposed estimators and the advantages of considering a robust approach instead of the classical one. A real data set illustrates the use of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aït Sahalia, Y. (1995). The delta method for nonaparmetric kernel functionals. Ph.D. dissertation, University of Chicago.

  • Bianco, A., Boente, G. (2002). On the asymptotic behavior of one-step estimation. Statistics and Probability Letters, 60, 33–47.

    Article  MathSciNet  Google Scholar 

  • Bianco, A., Boente, G. (2007). Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection. Journal of Time Series Analysis, 28, 274–306.

    Article  MathSciNet  Google Scholar 

  • Bianco, A., García Ben, M., Yohai, V. (2005). Robust estimation for linear regression with asymmetric errors. Canadian Journal Statistics, 33, 511–528.

    Article  MathSciNet  Google Scholar 

  • Boente, G., Fraiman, R., Meloche, J. (1997). Robust plug-in bandwidth estimators in nonparametric regression. Journal of Statistical Planning and Inference, 57, 109–142.

    Article  MathSciNet  Google Scholar 

  • Boente, G., Rodriguez, D. (2008). Robust bandwidth selection in semiparametric partly linear regression models: Monte Carlo study and influential analysis. Computational Statistics and Data Analysis, 52, 2808–2828.

    Article  MathSciNet  Google Scholar 

  • Boente, G., Rodriguez, D. (2010). Robust inference in generalized partially linear models. Computational Statistics and Data Analysis, 54, 2942–2966.

    Article  MathSciNet  Google Scholar 

  • Boente, G., Rodriguez, D. (2012). Robust estimates in generalized partially linear single-index models. TEST, 21, 386–411.

    Article  MathSciNet  Google Scholar 

  • Cantoni, E., Ronchetti, E. (2001). Resistant selection of the smoothing parameter for smoothing splines. Statistics and Computing, 11, 141–146.

    Article  MathSciNet  Google Scholar 

  • Cantoni, E., Ronchetti, E. (2006). A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures. Journal of Health Economics, 25, 198–213.

    Article  Google Scholar 

  • Carroll, R., Fan, J., Gijbels, I., Wand, M. (1997). Generalized partially linear single-index models. Journal of the American Statistical Association, 92, 477–489.

    Article  MathSciNet  Google Scholar 

  • Chang, Z. Q., Xue, L. G., Zhu, L. X. (2010). On an asymptotically more efficient estimation of the single-index model. Journal of Multivariate Analysis, 101, 1898–1901.

    Article  MathSciNet  Google Scholar 

  • Croux, C., Ruiz-Gazen, A. (2005). High breakdown estimators for principal components: the projection-pursuit approach revisited. Journal of Multivariate Analysis, 95, 206–226.

    Article  MathSciNet  Google Scholar 

  • Delecroix, M., Hristache, M., Patilea, V. (2006). On semiparametric \(M\)-estimation in single-index regression. Journal of Statistical Planning and Inference, 136, 730–769.

    Article  MathSciNet  Google Scholar 

  • Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69, 383–394.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., Hall, P., Ichimura, H. (1993). Optimal smoothing in single-index models. Annals of Statistics, 21, 157–178.

    Article  MathSciNet  Google Scholar 

  • Härdle, W., Stoker, T. M. (1989). Investigating smooth multiple regression by method of average derivatives. Journal of the American Statistical Association, 84, 986–95.

    MathSciNet  MATH  Google Scholar 

  • Hubert, M., Vandervieren, E. (2008). An adjusted boxplot for skewed distributions. Computational Statistics and Data Analysis, 52, 5186–5201.

    Article  MathSciNet  Google Scholar 

  • Leung, D. (2005). Cross-validation in nonparametric regression with outliers. Annals of Statistics, 33, 2291–2310.

    Article  MathSciNet  Google Scholar 

  • Leung, D., Marriott, F., Wu, E. (1993). Bandwidth selection in robust smoothing. Journal of Nonparametric Statistics, 4, 333–339.

    Article  MathSciNet  Google Scholar 

  • Li, W., Patilea, W. (2017). A new inference approach for single-index models. Journal of Multivariate Analysis, 158, 47–59.

    Article  MathSciNet  Google Scholar 

  • Liu, J., Zhang, R., Zhao, W., Lv, Y. (2013). A robust and efficient estimation method for single index models. Journal of Multivariate Analysis, 122, 226–238.

    Article  MathSciNet  Google Scholar 

  • Mallows, C. (1974). On some topics in robustness. Memorandum, Bell Laboratories, Murray Hill, N.J.

  • Manchester, L. (1996). Empirical influence for robust smoothing. Australian Journal of Statistics, 38, 275–296.

    Article  MathSciNet  Google Scholar 

  • Marazzi, A., Yohai, V. (2004). Adaptively truncated maximum likelihood regression with asymmetric errors. Journal of Statistical Planning and Inference, 122, 271–291.

    Article  MathSciNet  Google Scholar 

  • Maronna, R., Martin, D., Yohai, V. (2006). Robust statistics: Theory and methods. New York: Wiley.

    Book  Google Scholar 

  • Pollard, D. (1984). Convergence of stochastic processes. Springer series in statistics. New York: Springer.

    Google Scholar 

  • Powell, J. L., Stock, J. H., Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica, 57, 1403–30.

    Article  MathSciNet  Google Scholar 

  • Rodriguez, D. (2007). Estimación robusta en modelos parcialmente lineales generalizados. Ph.D. Thesis (in spanish), Universidad de Buenos Aires. http://cms.dm.uba.ar/academico/carreras/doctorado/tesisdanielarodriguez.pdf. Accessed 20 Feb 2019.

  • Rousseeuw, P. J., Yohai, V. J. (1984). Robust regression by means of \(S\)-estimators. In J. Franke, W. Hardle, D. Martin (Eds.), Robust and nonlinear time series, Lecture notes in statistics (Vol. 26, pp. 256–272). New York: Springer.

  • Severini, T., Staniswalis, J. (1994). Quasi-likelihood estimation in semiparametric models. Journal of the American Statistical Association, 89, 501–511.

    Article  MathSciNet  Google Scholar 

  • Severini, T., Wong, W. (1992). Profile likelihood and conditionally parametric models. Annals of Statistics, 20(4), 1768–1802.

    Article  MathSciNet  Google Scholar 

  • Sherman, R. (1994). Maximal inequalities for degenerate \(U\)-processes with applications to optimization estimators. Annals of Statistics, 22, 439–459.

    Article  MathSciNet  Google Scholar 

  • Sun, Y., Genton, M. G. (2011). Functional boxplots. Journal of Computational and Graphical Statistics, 20, 316–334.

    Article  MathSciNet  Google Scholar 

  • Tamine, J. (2002). Smoothed influence function: Another view at robust nonparametric regression. Discussion paper 62, Sonderforschungsbereich 373, Humboldt-Universiät zu Berlin.

  • Tukey, J. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • van der Vaart, A. (1988). Estimating a real parameter in a class of semiparametric models. Annals of Statistics, 16(4), 1450–1474.

    Article  MathSciNet  Google Scholar 

  • Wang, F., Scott, D. (1994). The L1 method for robust nonparametric regression. Journal of the American Statistical Association, 89, 65–76.

    MathSciNet  Google Scholar 

  • Wang, Q., Zhang, T., Hädle, W. (2014). An extended single index model with missing response at random. SFB 649 Discussion Paper 2014-003.

  • Wu, T. Z., Yu, K., Yu, Y. (2010). Single index quantile regression. Journal of Multivariate Analysis, 101, 1607–1621.

    Article  MathSciNet  Google Scholar 

  • Xia, Y., Härdle, W. (2006). Semi-parametric estimation of partially linear single-index models. Journal of Multivariate Analysis, 97, 1162–1184.

    Article  MathSciNet  Google Scholar 

  • Xia, Y., Härdle, W., Linton, O. (2012). Optimal smoothing for a computationally and efficient single index estimator. In Exploring research frontiers in contemporary statistics and econometrics: A Festschrift for Léopold Simar (pp. 229–261).

  • Xia, Y., Tong, H., Li, W. K., Zhu, L. (2002). An adaptive estimation of dimension reduction space (with discussion). Journal of the Royal Statistical Society, Series B, 64, 363–410.

    Article  MathSciNet  Google Scholar 

  • Xue, L. G., Zhu, L. X. (2006). Empirical likelihood for single-index model. Journal of Multivariate Analysis, 97, 1295–1312.

    Article  MathSciNet  Google Scholar 

  • Zhang, R., Huang, R., Lv, Z. (2010). Statistical inference for the index parameter in single-index models. Journal of Multivariate Analysis, 101, 1026–1041.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank an anonymous referee for valuable comments which led to an improved version of the original paper. This research was partially supported by Grants pict 2014-0351 from anpcyt, Grants 20120130100279BA and 20020170100022BA from the Universidad de Buenos Aires at Buenos Aires, Argentina and also by the Spanish Project MTM2016-76969P from the Ministry of Science and Innovation, Spain. It was also supported by the Italian–Argentinian project Metodi robusti per la previsione del costo e della durata della degenza ospedaliera funded by the joint collaboration program MINCYT-MAE AR14MO6 (IT1306) between mincyt from Argentina and mae from Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graciela Boente.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 A.1 Proof of Theorem 1

a) For any \(\varepsilon >0\), let \({\mathcal {X}}_0\) be a compact set such that \(P(\mathbf {x}\notin {\mathcal {X}}_0)<\varepsilon \). Then, we have that

$$\begin{aligned}&\displaystyle \sup _{{\varvec{{\varvec{\beta }}}},\mathbf {b}\in {\mathcal {S}}_1; a \in {\mathcal {K}}}\left| \varDelta _n({\varvec{\beta }},\widehat{\eta }_{\mathbf {b},a},a) -\varDelta _n({\varvec{\beta }},\eta _{\mathbf {b},a},a)\right| \\&\quad \le \sup _{\mathbf {b}\in {\mathcal {S}}_1,a \in {\mathcal {K}}}\Vert \widehat{\eta }_{\mathbf {b},a}-\eta _{\mathbf {b},a}\Vert _{0,\infty } \Vert \tau \Vert _{\infty } \Vert \phi ^{\prime }\Vert _{\infty } +\, 2 \Vert \phi \Vert _{\infty }\frac{1}{n}\sum _{i=1}^n \mathbb {I}_{(\mathbf {x}_i\notin {\mathcal {X}}_0)} \tau (\mathbf {x}_i) \end{aligned}$$

and so, using (10), the fact that \(P(\mathbf {x}\notin {\mathcal {X}}_0)<\varepsilon \) and the strong law of large numbers, we get that

$$\begin{aligned} \displaystyle \sup _{{\varvec{{\varvec{\beta }}}},\mathbf {b}\in {\mathcal {S}}_1; a \in {\mathcal {K}}}\left| \varDelta _n({\varvec{\beta }},\widehat{\eta }_{\mathbf {b},a},a)-\varDelta _n({\varvec{\beta }},\eta _{\mathbf {b},a},a)\right| \buildrel {a.s.}\over \longrightarrow 0\;. \end{aligned}$$

Therefore, it remains to show that \(\displaystyle \sup _{{\varvec{{\varvec{\beta }}}},\mathbf {b}\in {\mathcal {S}}_1; a \in {\mathcal {K}}}\left| \varDelta _n({\varvec{\beta }},\eta _{\mathbf {b},a},a)-\varDelta ({\varvec{\beta }},\eta _{\mathbf {b},a},a)\right| \buildrel {a.s.}\over \longrightarrow 0\). Define the following class of functions \({\mathcal {H}}=\{f_{{\varvec{{\varvec{\beta }}}}}(y,\mathbf {x})=\phi (y,\eta _{\mathbf {b},a}({\varvec{\beta }}^{\textsc {t}}\mathbf {x}), a) \tau (\mathbf {x}) \,,\, {\varvec{\beta }},\mathbf {b}\in {\mathcal {S}}_1, a \in {\mathcal {K}}\}\). Using Theorem 3 from Chapter 2 in Pollard (1984), the compactness of \({\mathcal {K}}\), A1, the continuity of \(\eta _{{\varvec{{\varvec{\beta }}}}, \alpha }(u)\) given in A6 and analogous arguments to those considered in Lemma 1 from Bianco and Boente (2002), we get that \(\displaystyle \sup _{{\varvec{{\varvec{\beta }}}},\mathbf {b}\in {\mathcal {S}}_1; a \in {\mathcal {K}}}\left| \varDelta _n({\varvec{\beta }},\widehat{\eta }_{\mathbf {b},a},a)-\varDelta ({\varvec{\beta }},\eta _{\mathbf {b},a},a)\right| \buildrel {a.s.}\over \longrightarrow 0\) and a) follows.

b) Let \(\widehat{{\varvec{\beta }}}_k\) be a subsequence of \(\widehat{{\varvec{\beta }}}\) such that \(\widehat{{\varvec{\beta }}}_k\rightarrow {\varvec{\beta }}^*\), where \({\varvec{\beta }}^*\) lies in the compact set \({\mathcal {S}}_1\). Let us assume, without loss of generality, that \(\widehat{{\varvec{\beta }}} \buildrel {a.s.}\over \longrightarrow {\varvec{\beta }}^*\). Then, A7, the continuity of \(\eta _{{\varvec{{\varvec{\beta }}}}, \alpha }\), the consistency of \(\widehat{\alpha }_{{\textsc {r}}}\) and a) entail that \(\varDelta _n(\widehat{{\varvec{\beta }}},\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}},{\varvec{\widehat{\alpha }}}_{{\textsc {r}}}},\widehat{\alpha }_{{\textsc {r}}})-\varDelta ({\varvec{\beta }}^*,\eta _0,\alpha _0) \buildrel {a.s.}\over \longrightarrow 0\) and \(\varDelta _n( {\varvec{\beta }}_0,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}},{\varvec{\widehat{\alpha }}}_{{\textsc {r}}}},\widehat{\alpha }_{{\textsc {r}}} )-\varDelta ({\varvec{\beta }}_0,\eta _{0},\alpha _0) \buildrel {a.s.}\over \longrightarrow 0\), since \(\eta _{{\varvec{{\varvec{\beta }}}}_0,\alpha _0}=\eta _0\). Now, using that \(\varDelta _n( {\varvec{\beta }}_0,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}},{\varvec{\widehat{\alpha }}}_{{\textsc {r}}}},\widehat{\alpha }_{{\textsc {r}}} )\ge \varDelta _n(\widehat{{\varvec{\beta }}},\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}},{\varvec{\widehat{\alpha }}}_{{\textsc {r}}}},\widehat{\alpha }_{{\textsc {r}}})\) and \(\varDelta ({\varvec{\beta }},\eta _0,\alpha _0)\) has a unique minimum at \({\varvec{\beta }}_0\), we conclude the proof. \(\square \)

1.2 A.2 Proof of Proposition 1

a) The single-index parameter estimation related to Step LG2 is obtained by means of the minimization with respect to \({\varvec{\beta }}\) of

$$\begin{aligned} \sum _{i=1}^n \rho \left( \frac{\sqrt{d\left( y_i, \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}} \left( {\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i\right) \right) }}{c}\right) \tau (\mathbf {x}_i) , \end{aligned}$$

among the vectors of length one, where, at the same time, \(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\) is defined as

$$\begin{aligned} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)= & {} \displaystyle \mathop {\text{ argmin }}_{a\in \mathbb {R}} \sum _{i=1}^n \rho \left( \frac{\sqrt{d(y_i,a)}}{c}\right) W_{h}(u,{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i ). \end{aligned}$$

Hence, if we denote \({\mathcal {B}}({\varvec{\theta }})={\varvec{\theta }}/\Vert {\varvec{\theta }}\Vert \), we have that \(\widehat{{\varvec{\beta }}}_{\varepsilon }=\widehat{{\varvec{\theta }}}_{\varepsilon }/\Vert \widehat{{\varvec{\theta }}}_{\varepsilon }\Vert ={\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon })\) where \(\widehat{{\varvec{\theta }}}_{\varepsilon }\) is the solution of

$$\begin{aligned}&\mathop {\text{ argmin }}_{{\varvec{{\varvec{\theta }}}}} \frac{1-\varepsilon }{n} \sum _{i=1}^n \rho \left( \frac{\sqrt{d\left( y_i, \widehat{\eta }^{\varepsilon }_{{\mathcal {B}}({\varvec{{\varvec{\theta }}}})} \left( {\mathcal {B}}({\varvec{\theta }})^{\textsc {t}}\mathbf {x}_i\right) \right) }}{c}\right) \tau (\mathbf {x}_i)\\&\quad +\, \varepsilon \, \rho \left( \frac{\sqrt{d\left( y_0, \widehat{\eta }^{\varepsilon }_{{\mathcal {B}}({\varvec{{\varvec{\theta }}}})} \left( {\mathcal {B}}({\varvec{\theta }})^{\textsc {t}}\mathbf {x}_0\right) \right) }}{c}\right) \tau (\mathbf {x}_0). \end{aligned}$$

Then, \(\widehat{{\varvec{\theta }}}_{\varepsilon }\) satisfies

$$\begin{aligned} \mathbf{{0}}= & {} \left( \mathbf{I}- {\mathcal {B}}\left( \widehat{{\varvec{\theta }}}_{\varepsilon }\right) {\mathcal {B}}\left( \widehat{{\varvec{\theta }}}_{\varepsilon }\right) ^{\textsc {t}}\right) \left[ \frac{(1-\varepsilon )}{n}\sum _{i=1}^n \psi \left( y_i,\widehat{\eta }^{\varepsilon }_{{\mathcal {B}}({\varvec{\widehat{{\varvec{\theta }}}}}_{\varepsilon })} ({\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon })^{\textsc {t}}\mathbf {x}_i),c\right) \widehat{{\varvec{\nu }}}_i^{\epsilon }\left( {\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon }),{\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon }) \mathbf {x}_i\right) \tau (\mathbf {x}_i) \right. \\&\left. +\; \varepsilon \; \psi \left( y_0,\widehat{\eta }^{\varepsilon }_{{\mathcal {B}}({\varvec{\widehat{{\varvec{\theta }}}}}_{\varepsilon })}({\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon })^{\textsc {t}}\mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0^{\epsilon }\left( {\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon }),{\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon }) \mathbf {x}_0\right) \tau (\mathbf {x}_0) \right] \; , \end{aligned}$$

where

$$\begin{aligned} \psi (y,a,c)= \frac{\partial }{\partial a} \phi (y,a,c)= \frac{1}{2c}\varPsi \left( \frac{\sqrt{d(y,a)}}{c}\right) \frac{1- \exp (y-a)}{\sqrt{d(y,a)}} \end{aligned}$$

as defined in (11), \(\varPsi \) stands for the derivative of \(\rho \) and \(\widehat{{\varvec{\nu }}}_i^{\epsilon }(\mathbf {b},t)\) are given by

$$\begin{aligned} \widehat{{\varvec{\nu }}}_i^{\epsilon }(\mathbf {b},t)={ \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}^{\epsilon }(s)|_{({\varvec{{\varvec{\beta }}}},s)=(\mathbf {b},t)}+ \frac{\partial }{\partial s} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}^{\epsilon }(s)|_{({\varvec{{\varvec{\beta }}}},s)=(\mathbf {b},t)}\;\mathbf {x}_i} \; . \end{aligned}$$

Using that \(\widehat{{\varvec{\beta }}}_{\varepsilon }={\mathcal {B}}(\widehat{{\varvec{\theta }}}_{\varepsilon })\), we get that the estimator \(\widehat{{\varvec{\beta }}}_{\varepsilon }\) verifies

$$\begin{aligned} \mathbf{{0}}= & {} \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}_{\varepsilon }} {\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}}\right) \left[ \frac{(1-\varepsilon )}{n}\sum _{i=1}^n \psi \left( y_i,\widehat{\eta }^{\varepsilon }_{{\varvec{\widehat{{\varvec{\beta }}}}}_{\varepsilon }}({\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i),c\right) \widehat{{\varvec{\nu }}}_i^{\epsilon }({\widehat{{\varvec{\beta }}}_{\varepsilon }},{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i) \tau (\mathbf {x}_i) \right. \\&\left. +\; \varepsilon \; \psi \left( y_0,\widehat{\eta }^{\varepsilon }_{{\varvec{\widehat{{\varvec{\beta }}}}}_{\varepsilon }}({\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0^{\epsilon }({\widehat{{\varvec{\beta }}}_{\varepsilon }},{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_0) \tau (\mathbf {x}_0) \right] \; \end{aligned}$$

and \(\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u)\) is the solution of

$$\begin{aligned} \frac{(1-\varepsilon )}{n}\sum _{i=1}^n \psi \left( y_i,\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) W_{h}(u,{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i ) +\varepsilon \; \psi \left( y_0,\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) W_{h}(u,{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0 ) = 0 \; . \end{aligned}$$
(A.1)

Then, if we call

$$\begin{aligned} {\varvec{\lambda }}(\varepsilon )= & {} \frac{(1-\varepsilon )}{n}\sum _{i=1}^n \psi \left( y_i,\widehat{\eta }^{\varepsilon }_{{\varvec{\widehat{{\varvec{\beta }}}}}_{\varepsilon }}({\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i),c\right) \widehat{{\varvec{\nu }}}_i^{\epsilon }({\widehat{{\varvec{\beta }}}_{\varepsilon }},{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i) \tau (\mathbf {x}_i) \\&+\; \varepsilon \; \psi \left( y_0,\widehat{\eta }^{\varepsilon }_{{\varvec{\widehat{{\varvec{\beta }}}}}_{\varepsilon }}({\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0^{\epsilon }({\widehat{{\varvec{\beta }}}_{\varepsilon }},{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_0) \tau (\mathbf {x}_0) \end{aligned}$$

we get that, for any \(0\le \epsilon <1\), \(\widehat{{\varvec{\beta }}}_{\varepsilon }\) satisfies \( \mathbf{{0}}= \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}_{\varepsilon }} {\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}}\right) \; {\varvec{\lambda }}(\varepsilon ). \) Therefore, differentiating with respect to \(\varepsilon \) and evaluating at \(\varepsilon =0\) and using that \({\varvec{\lambda }}(0)=\mathbf{{0}}\), we obtain that

$$\begin{aligned} \mathbf{{0}}= & {} \frac{\partial }{\partial \varepsilon }\left. \left[ \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}_{\varepsilon }} {\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}}\right) {\varvec{\lambda }}(\varepsilon ) \right] \right| _{\varepsilon =0} =\frac{\partial }{\partial \varepsilon }\left. \left[ \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}_{\varepsilon }} {\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}}\right) \right] \right| _{\varepsilon =0} {\varvec{\lambda }}(0) + \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) \frac{\partial }{\partial \varepsilon }\left. {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0} \nonumber \\= & {} \left( \mathbf{I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) \frac{\partial }{\partial \varepsilon }\left. {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0} \,. \end{aligned}$$
(A.2)

Henceforth, in order to compute \(\left. ({\partial {\varvec{\lambda }}(\varepsilon )}/{\partial \varepsilon }) \right| _{\varepsilon =0}\) and to simplify the presentation, we consider the following functions:

$$\begin{aligned} h(\varepsilon ,{\varvec{\beta }},u) =\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u)\;,\qquad h_{{\varvec{{\varvec{\beta }}}}}(\varepsilon ,{\varvec{\beta }},u) = \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u)\;,\qquad h_{u}(\varepsilon ,{\varvec{\beta }},u) = \frac{\partial }{\partial u} \widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u) \end{aligned}$$

and their corresponding derivatives with respect to \(\varepsilon \)

$$\begin{aligned} H_i= & {} \left. \frac{\partial }{\partial \varepsilon } h(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon },{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i)\right| _{\varepsilon =0}\;,\qquad H_{{\varvec{{\varvec{\beta }}}},i}= \left. \frac{\partial }{\partial \varepsilon } h_{{\varvec{{\varvec{\beta }}}}}(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon },{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i)\right| _{\varepsilon =0}\;,\qquad \\ H_{u,i}= & {} \left. \frac{\partial }{\partial \varepsilon } h_u(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon },{\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}} \mathbf {x}_i)\right| _{\varepsilon =0}\;. \end{aligned}$$

Thus, we have that

$$\begin{aligned} \left. \frac{\partial }{\partial \varepsilon } {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0}= & {} -\frac{1}{n} \sum _{i=1}^n \psi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i) \tau (\mathbf {x}_i) \\&+\; \frac{1}{n} \sum _{i=1}^n \left\{ \chi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; H_i \; \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i)\right. \\&\left. +\, \psi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; (H_{{\varvec{{\varvec{\beta }}}},i}+ \mathbf {x}_i H_{u,i})\right\} \tau (\mathbf {x}_i)\\&+ \; \psi \left( y_0,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0) \tau (\mathbf {x}_0). \end{aligned}$$

Since \({\varvec{\lambda }}(0)=\mathbf{{0}}\), we obtain that

$$\begin{aligned} \left. \frac{\partial }{\partial \varepsilon } {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0}= & {} \frac{1}{n} \sum _{i=1}^n \left\{ \chi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; H_i \; \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i) \right. \nonumber \\&\left. + \psi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; (H_{{\varvec{{\varvec{\beta }}}},i}+ \mathbf {x}_i H_{u,i})\right\} \tau (\mathbf {x}_i) \nonumber \\&+ \; \psi \left( y_0,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0) \tau (\mathbf {x}_0). \end{aligned}$$
(A.3)

It remains to compute the functions \(H_i\), \(H_{{\varvec{{\varvec{\beta }}}},i}\) and \( H_{u,i}\). Straightforward arguments lead to

$$\begin{aligned} H_i= & {} \left. \frac{\partial }{\partial \varepsilon } h(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon }, \widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}\mathbf {x}_i)\right| _{\varepsilon =0}\\= & {} \left. \frac{\partial }{\partial \varepsilon } h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)} +\left. \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s}) =(0,\widehat{\mathbf {s}}_i)}\left. \frac{\partial }{\partial \varepsilon } \widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0}\\&+\left. \frac{\partial }{\partial u} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s}) =(0,\widehat{\mathbf {s}}_i)}\left. \frac{\partial }{\partial \varepsilon } \widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0} \mathbf {x}_i\; , \end{aligned}$$

where \(\widehat{\mathbf {s}}_i=(\widehat{{\varvec{\beta }}},\widehat{{\varvec{\beta }}}^{\textsc {t}}\mathbf {x}_i)\). Then, we get that

$$\begin{aligned} H_i= & {} \left. \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u))\right| _{({\varvec{{\varvec{\beta }}}}, u)=\widehat{\mathbf {s}}_i}+\left. \frac{\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial {\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}}, u)=\widehat{\mathbf {s}}_i}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}) +\left. \frac{\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial u} \right| _{({\varvec{{\varvec{\beta }}}}, u)=\widehat{\mathbf {s}}_i}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\mathbf {x}_i\\= & {} \left. \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u))\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} + \widehat{{\varvec{\nu }}}_i(\widehat{\mathbf {s}}_i)\;. \end{aligned}$$

Analogously, we have that

$$\begin{aligned} H_{{\varvec{{\varvec{\beta }}}},i}= & {} \left. \frac{\partial }{\partial \varepsilon } h{{\varvec{{\varvec{\beta }}}}}(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon },\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}\mathbf {x}_i)\right| _{\varepsilon =0}\\= & {} \left. \frac{\partial }{\partial \varepsilon }\frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)} +\left. \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)}\left. \frac{\partial }{\partial \varepsilon }\widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0}\\&+\left. \frac{\partial }{\partial u} \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)} \left. \frac{\partial }{\partial \varepsilon }\widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0} \mathbf {x}_i\; , \end{aligned}$$

so

$$\begin{aligned} H_{{\varvec{{\varvec{\beta }}}},i}= & {} \left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}+\left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial ^2{\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}) +\left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial u \partial {\varvec{{\varvec{\beta }}}}}\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\\&\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\mathbf {x}_i. \end{aligned}$$

Finally, in a similar way, we obtain that

$$\begin{aligned} H_{u,i}= & {} \left. \frac{\partial }{\partial \varepsilon } h_{u}(\varepsilon ,\widehat{{\varvec{\beta }}}_{\varepsilon },\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}\mathbf {x}_i)\right| _{\varepsilon =0}\\= & {} \left. \frac{\partial }{\partial \varepsilon }\frac{\partial }{\partial u} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)} +\left. \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \frac{\partial }{\partial u} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)}\left. \frac{\partial }{\partial \varepsilon }\widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0}\\&+\left. \frac{\partial }{\partial u } \frac{\partial }{\partial u} h(\varepsilon ,{\varvec{\beta }},u)\right| _{(\varepsilon ,\mathbf {s})=(0,\widehat{\mathbf {s}}_i)} \left. \frac{\partial }{\partial \varepsilon }\widehat{{\varvec{\beta }}}_{\varepsilon }\right| _{\varepsilon =0} \mathbf {x}_i\; , \end{aligned}$$

which implies that

$$\begin{aligned} H_{u,i}= & {} \left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial u} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}+\left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial {\varvec{{\varvec{\beta }}}}\partial u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\\&+\left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial ^2 u }\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\mathbf {x}_i\; . \end{aligned}$$

Using the previous expressions, we deduce that

$$\begin{aligned} H_{{\varvec{{\varvec{\beta }}}},i}+ \mathbf {x}_i H_{u,i}= & {} \left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} + \left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial u} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i\; \\&+ \left[ \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial ^2{\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} + \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial ^2 u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i \mathbf {x}_i^{\textsc {t}}\right. \\&\left. +\left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial u \partial {\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}+ \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial {\varvec{{\varvec{\beta }}}}\partial u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}\right] \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\; . \end{aligned}$$

Now, replacing in (A.3) \(H_i\), \(H_{{\varvec{{\varvec{\beta }}}},i}\) and \(H_{u,i}\) with the obtained expression, we have that

$$\begin{aligned} \left. \frac{\partial }{\partial \varepsilon } {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0}= & {} \frac{1}{n} \sum _{i=1}^n \chi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; \tau (\mathbf {x}_i) \; {\left. \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u))\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}} \; \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i) \nonumber \\&+\; \frac{1}{n} \sum _{i=1}^n \chi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; \; \tau (\mathbf {x}_i) \; \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i) \widehat{{\varvec{\nu }}}_i({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i)^{\textsc {t}}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\\&+ \; \frac{1}{n} \sum _{i=1}^n \psi \left( y_i,\widehat{\eta }_{{\varvec{\widehat{{\varvec{\beta }}}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_i),c\right) \; \tau (\mathbf {x}_i) \left\{ \left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\right. \\&\left. +\left. \mathop {\mathrm{EIF}}\left( \frac{\partial }{\partial u} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right) \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i\;\right. \\&+\;\left. \left[ \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial ^2{\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} + \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial ^2 u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i \mathbf {x}_i^{\textsc {t}}+\left. \frac{\partial ^2\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial u \partial {\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}\right. \right. \\&\left. \left. + \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial {\varvec{{\varvec{\beta }}}}\partial u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}\right] \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})\right\} \\&+\; \psi \left( y_0,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}({\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0),c\right) \widehat{{\varvec{\nu }}}_0({\widehat{{\varvec{\beta }}}},{\widehat{{\varvec{\beta }}}^{\textsc {t}}} \mathbf {x}_0) \tau (\mathbf {x}_0). \end{aligned}$$

Recall that

$$\begin{aligned} \mathbf {V}(\widehat{\mathbf {s}}_i)= & {} \left[ \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial ^2{\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} + \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial ^2 u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i \mathbf {x}_i^{\textsc {t}}+\left. \frac{\partial ^2\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial u \partial {\varvec{{\varvec{\beta }}}}} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}\right. \\&\left. + \left. \frac{\partial ^2 \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) }{\partial {\varvec{{\varvec{\beta }}}}\partial u} \right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i} \mathbf {x}_i^{\textsc {t}}\right] . \end{aligned}$$

Then, we get that

$$\begin{aligned} \left. \frac{\partial }{\partial \varepsilon } {\varvec{\lambda }}(\varepsilon ) \right| _{\varepsilon =0} = \varvec{\ell }_n+ \mathbf {M}_n \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}), \end{aligned}$$

where \(\varvec{\ell }_n\in \mathbb {R}^q\) and \(\mathbf {M}_n\in \mathbb {R}^{q\times q}\) are defined in (20) and (21). Replacing in (A.2), we have that

$$\begin{aligned} \mathbf{{0}}= & {} \left( \mathbf {I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) (\varvec{\ell }_n+ \mathbf {M}_n \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}) ) . \end{aligned}$$

It is worth noticing that since \(\Vert \widehat{{\varvec{\beta }}}_{\varepsilon }\Vert ^2=1\), differentiating with respect to \(\varepsilon \) and evaluating at \(\varepsilon =0\), we have that

$$\begin{aligned} 0=\left. \frac{\partial }{\partial \varepsilon }\widehat{{\varvec{\beta }}}_{\varepsilon }^{\textsc {t}}\widehat{{\varvec{\beta }}}_{\varepsilon } \right| _{\varepsilon =0}= 2 \widehat{{\varvec{\beta }}}^{\textsc {t}}\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}) \; \end{aligned}$$

which, taking into account that \(\widehat{{\varvec{\beta }}}=\mathbf {e}_q\), implies that \(\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})_q=0\). Therefore, we only have to compute \(\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}})_j\) for \(j=1,\dots ,q-1\).

Using again that \(\widehat{{\varvec{\beta }}}=\mathbf {e}_q\), we obtain that

$$\begin{aligned} \left( \mathbf {I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) = \left( \begin{array}{cc} \mathbf {I}_{q-1}&{}\quad \mathbf {0}\\ \mathbf {0}&{}\quad 0\end{array}\right) \,. \end{aligned}$$

Hence, we have that the left superior matrix of \(\left( \mathbf {I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) \mathbf {M}_n\) equals the matrix \(\mathbf {M}_{n,1}\in \mathbb {R}^{(q-1)\times (q-1)}\), so that \( \mathbf{{0}}= \left( \mathbf {I}- {\widehat{{\varvec{\beta }}}} {\widehat{{\varvec{\beta }}}^{\textsc {t}}}\right) (\varvec{\ell }_n+ \mathbf {M}_n \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}) ) \) implies

$$\begin{aligned} \mathbf{{0}}= \varvec{\ell }_n^{(q-1)}+ \mathbf {M}_{n,1} \mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}^{(q-1)}). \end{aligned}$$
(A.4)

Therefore, from (A.4) we get that \(\mathop {\mathrm{EIF}}(\widehat{{\varvec{\beta }}}^{(q-1)}) = - \mathbf {M}_{n,1}^{-1} \varvec{\ell }_n^{(q-1)} \).

It is worth noticing that \(\varvec{\ell }_n\) and \(\mathbf {M}_n\) involve \(\left. \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u))\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\),\( \left. \mathop {\mathrm{EIF}}( {\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}/{\partial {\varvec{{\varvec{\beta }}}}})\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\) and \( \left. \mathop {\mathrm{EIF}}( {\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}/{\partial u})\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\).

b) Let us derive \( \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)) \). Since \(\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u)\) is the solution of (A.1), we have that

$$\begin{aligned} \frac{(1-\varepsilon )}{n}\sum _{i=1}^n K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \psi \left( y_i,\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) +\varepsilon \; K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0-u) \psi \left( y_0,\widehat{\eta }^{\varepsilon }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) = 0. \end{aligned}$$

Differentiating with respect to \(\varepsilon \) and evaluating at \(\varepsilon =0\), we obtain that

$$\begin{aligned} \mathop {\mathrm{EIF}}(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u))= -\frac{K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0-u) \psi \left( y_0,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) }{\displaystyle \frac{1}{n}\sum \nolimits _{i=1}^n K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) } \,. \end{aligned}$$
(A.5)

Analogously, differentiating first with respect to \({\varvec{\beta }}\) on both sides of Eq. (A.1) and then, with respect to \(\varepsilon \) and evaluating at \(\varepsilon =0\), we can obtain an expression for \( \left. \mathop {\mathrm{EIF}}({\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}/{\partial {\varvec{\beta }}})\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\). Alternatively, we may differentiate (A.5) with respect to \({\varvec{\beta }}\) to obtain

$$\begin{aligned}&\mathop {\mathrm{EIF}}\left( \frac{\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\partial {\varvec{{\varvec{\beta }}}}}\right) = -\frac{\frac{1}{h} K_h^{\prime }({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0-u) \psi \left( y_0,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) \mathbf {x}_0+ K_h ({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0-u) \chi \left( y_0,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) \displaystyle \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}{\displaystyle \frac{1}{n}\sum \nolimits _{i=1}^n K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) }\\&\quad +\; \frac{K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_0-u) \psi \left( y_0,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) }{\left\{ \displaystyle \frac{1}{n}\sum \nolimits _{i=1}^n K_h({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) \right\} ^2}\, \left[ \frac{1}{n} \sum _{i=1}^n \frac{1}{h} K_h^{\prime }({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) \mathbf {x}_i\right. \\&\qquad \left. +\; \frac{1}{n} \sum _{i=1}^n K_h ({\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u) \chi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),c\right) \displaystyle \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\right] \,. \end{aligned}$$

Similar arguments lead to the expression for \( \left. \mathop {\mathrm{EIF}}({\partial \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)}/{\partial u})\right| _{({\varvec{{\varvec{\beta }}}},u)=\widehat{\mathbf {s}}_i}\).

Finally, note that \(\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)\), satisfies

$$\begin{aligned} \sum _{i=1}^n K\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right)= & {} 0 . \end{aligned}$$
(A.6)

Hence, differentiating with respect to \({\varvec{\beta }}\) equation (A.6), we get that

$$\begin{aligned} 0= & {} \frac{1}{h} \sum _{i=1}^n K^{\prime }\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \mathbf {x}_i \\&+ \;\sum _{i=1}^n K\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \chi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \times \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u), \end{aligned}$$

which implies that

$$\begin{aligned} \frac{\partial }{\partial {\varvec{{\varvec{\beta }}}}} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u)= & {} -\frac{1}{h} \left[ \sum _{i=1}^n K\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \chi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \right] ^{-1} \,\\&\sum _{i=1}^n K^{\prime }\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \mathbf {x}_i \;. \end{aligned}$$

On the other hand, differentiating (A.6) with respect to u, we obtain that

$$\begin{aligned} 0= & {} -\frac{1}{h} \sum _{i=1}^n K^{\prime }\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \psi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \\&+ \;\sum _{i=1}^n K\left( \frac{{\varvec{\beta }}^{\textsc {t}}\mathbf {x}_i-u}{h}\right) \chi \left( y_i,\widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u),\alpha \right) \times \frac{\partial }{\partial u} \widehat{\eta }_{{\varvec{{\varvec{\beta }}}}}(u) \end{aligned}$$

which entails that

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostinelli, C., Bianco, A.M. & Boente, G. Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter. Ann Inst Stat Math 72, 855–893 (2020). https://doi.org/10.1007/s10463-019-00712-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00712-8

Keywords

Navigation