Skip to main content
Log in

Semiparametric quantile regression with random censoring

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper considers estimation and inference in semiparametric quantile regression models when the response variable is subject to random censoring. The paper considers both the cases of independent and dependent censoring and proposes three iterative estimators based on inverse probability weighting, where the weights are estimated from the censoring distribution using the Kaplan–Meier, a fully parametric and the conditional Kaplan–Meier estimators. The paper proposes a computationally simple resampling technique that can be used to approximate the finite sample distribution of the parametric estimator. The paper also considers inference for both the parametric and nonparametric components of the quantile regression model. Monte Carlo simulations show that the proposed estimators and test statistics have good finite sample properties. Finally, the paper contains a real data application, which illustrates the usefulness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the simulations below, we tried as starting values the following alternative specifications: \(\left[ \beta _{\tau }^{0T},a_{\tau }^{0T},b_{\tau }^{0T}\right] ^{{\mathrm{T}}}=\left[ \widehat{\beta }_{q\tau }^{{T}},\widehat{\theta }_{q\tau }^{{T}},0^{{T}}\right] ^{{\mathrm{T}}}\), where \(\widehat{\beta }_{q\tau }\) and \(\widehat{\theta }_{q\tau }\) are defined as \(\widehat{\beta }_{q\tau },\widehat{\theta }_{q\tau }=\arg \min _{\beta _{\tau },\theta _{\tau }}\sum _{i=1}^{n}\frac{\delta _{i}}{\widehat{G}\left( \cdot \right) }\rho _{\tau }\left( Z_{i}-X_{1i}^{{T}}\beta _{\tau }-X_{3i} ^{{T}}\theta _{\tau }\right) ,\) that is \(\widehat{\beta }_{q\tau }\) and \(\widehat{\theta }_{q\tau }\) are the estimators of a parametric quantile regression, \(\left[ \beta _{\tau }^{0T},a_{\tau }^{0T},b_{\tau }^{0T}\right] ^{{\mathrm{T}}}=\left[ \widehat{\beta }_{q\tau }^{{T}},\widehat{a}_{f\tau }^{{T}},\widehat{b}_{f\tau }^{{T}}\right] ^{{\mathrm{T}}}\), where \(\widehat{a}_{f\tau }\) and \(\widehat{b}_{f\tau }\) are defined as \(\widehat{a}_{f\tau },\widehat{b}_{f\tau }=\arg \min _{a_{\tau },b_{\tau }}\sum _{i=1}^{n}\frac{\delta _{i}}{\widehat{G} \left( \cdot \right) }\rho _{\tau }\left( Z_{i}-X_{1i}^{{T}}\widehat{\beta }_{q\tau }-X_{3i}^{{T}}\left( a_{\tau f}-b_{\tau f}\left( X_{2i}-x_{2f}\right) \right) \right) K_{h}\left( X_{2i}-x_{2f}\right) \), where \(x_{2f}\) is a chosen point in the support of \(X_{2i}\) and the minimization is carried out using the Nelder–Mead algorithm, and finally \(\left[ \beta _{\tau } ^{0T},a_{\tau }^{0T},b_{\tau }^{0T}\right] ^{{\mathrm{T}}}\) are chosen as independent draws from a uniform distribution on \(\left( -\,2,2\right) .\) All of the above initial values resulted in final estimators with biases and/or IMSEs that were very close (with maximum difference at the second decimal place) to those reported in Tables 123456 and 7 in the paper.

  2. I am grateful to one referee for suggesting this procedure.

  3. To assess the sensitivity of the IMSE to this choice of b, we considered two alternative bandwidths, \(\widehat{b}_{1}=\widehat{b}/4\) and \(\widehat{b} _{2}=4\widehat{b},\) and computed the corresponding IMSE’s. The results of the simulations indicated that the IMSE’s of the resulting quantile estimators were still larger than those based on Breslow’s (1972) estimator.

References

  • Bang, H., Tsiatis, A. (2000). Estimating medical costs with censored data. Biometrika, 87, 329–343.

    Article  MathSciNet  Google Scholar 

  • Bang, H., Tsiatis, A. (2002). Median regression with censored cost data. Biometrics, 58, 643–649.

    Article  MathSciNet  Google Scholar 

  • Bassett, G., Koenker, R. (1978). Asymptotic theory of least absolute error regression. Journal of the American Statistical Association, 73, 618–622.

    Article  MathSciNet  Google Scholar 

  • Beran, R. (1981). Nonparametric regression with randomly censored survival data, Technical Report, University of California, Berkeley.

  • Breslow, N. (1972). Discussion of a paper by D. R. Cox. Journal of the Royal Statistical Society, 34, 261–217.

    MathSciNet  Google Scholar 

  • Cai, Z., Xiao, Z. (2012). Semiparametric quantile regression estimation in dynamic models with partially varying coefficients. Journal of Econometrics, 167, 413–425.

    Article  MathSciNet  Google Scholar 

  • Cai, Z., Xu, X. (2008). Nonparametric quantile estimations for dynamic smooth coefficient models. Journal of the American Statistical Association, 103, 1596–1608.

    Article  MathSciNet  Google Scholar 

  • Chauduri, P. (1991). Global nonparametric estimation of conditional quantile functions and their derivatives. Journal of Multivariate Analysis, 39, 246–269.

    Article  MathSciNet  Google Scholar 

  • Chauduri, P., Doksum, K., Samarov, A. (1997). On average derivative quantile regression. Annals of Statistics, 25, 715–744.

  • Cox, D. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society, 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Cox, D. (1975). Partial likelihood. Biometrika, 62, 269–272.

    Article  MathSciNet  Google Scholar 

  • De Backer, M., El Ghouch, A., van Keilegom, I. (2017). Semiparametric copula quantile regression for complete or censored data. Electronic Journal of Statistics, 11, 1660–1698.

    Article  MathSciNet  Google Scholar 

  • El Ghouch, A., van Keilegom, I. (2009). Local linear quantile regression with dependent censored data. Statistica Sinica, 19, 1621–1640.

  • Fan, J., Gijbels, I. (1994). Censored regression: Local linear approximations and their applications. Journal of the American Statistical Association, 89, 560–569.

    Article  MathSciNet  Google Scholar 

  • Fan, J., Hu, T., Truong, Y. (1994). Robust non-parametric function estimation. Scandinavian Journal of Statistics, 21, 433–446.

  • Fan, J., Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 11, 1031–1057.

    Article  MathSciNet  Google Scholar 

  • He, X., Liang, H. (2000). Quantile regression estimates for a class of linear and partially linear errors-in-variables models. Statistica Sinica, 10, 129–140.

  • He, X., Shi, P. (1996). Bivariate tensor product b-splines in a partially linear regression. Journal of Multivariate Analysis, 58, 162–181.

    Article  MathSciNet  Google Scholar 

  • Horowitz, J., Lee, S. (2005). Nonparametric estimation of an additive quantile regression model. Journal of the American Statistical Association, 100, 1238–1249.

    Article  MathSciNet  Google Scholar 

  • Hunter, D., Lange, K. (2000). Quantile regression via an MM algorithm. Journal of Computational and Graphical Statistics, 9, 60–77.

    MathSciNet  Google Scholar 

  • Jin, Z., Ying, Z., Wei, L. (2001). A simple resampling method by perturbing the minimand. Biometrika, 88, 381–390.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J., Prentice, R. (2002). The statistical analysis of failure data. New York: Wiley.

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.

    Article  MathSciNet  Google Scholar 

  • Koul, H., Susarla, V., Ryzin, J. V. (1981). Regression analysis of randomly right censored data. Annals of Statistics, 9, 1276–1288.

  • Lee, S. (2003). Efficient semiparametric estimation of a partially linear quantile regression model. Econometric Theory, 19, 1–31.

    Article  MathSciNet  Google Scholar 

  • Leng, C., Tong, X. (2013). A quantile regression estimator for censored data. Bernoulli, 19, 344–361.

    Article  MathSciNet  Google Scholar 

  • Li, G., Datta, S. (2001). A bootstrap approach to nonparametric regression for right censored data. Annals of the Institute of Statistical Mathematics, 53, 708–729.

  • Li, W., Patilea, V. (2017). A dimension reduction approach for conditional Kaplan–Meier estimators, Test forthcoming.

  • Lin, Y. (2000). Linear regression analysis of censored medical costs. Biostatistics, 1, 35–47.

    Article  Google Scholar 

  • Peng, L., Huang, Y. (2008). Survival analysis with quantile regression models. Journal of the American Statistical Association, 103, 637–649.

    Article  MathSciNet  Google Scholar 

  • Robins, J., Rotnitzky, A. (1992). Recovery information and adjustment for dependent censoring using surrogate markers in AIDS epidemiology-methodological issues (pp. 297–331). Boston: Birkhauser.

    Chapter  Google Scholar 

  • Satten, G., Datta, S. (2001). The Kaplan–Meier estimator as an inverse-probability-of-censoring weighted average. American Statistician, 55, 207–210.

    Article  MathSciNet  Google Scholar 

  • Su, J., Wei, L. (1991). A lack of fit test for the mean function in a generalized linear model. Journal of the American Statistical Association, 86, 420–426.

    Article  MathSciNet  Google Scholar 

  • Van Keilegom, I., Akritas, M., Veraverbeke, N. (2001). Estimation of the conditional distribution in regression with censored data: A comparative study. Computational Statistics and Data Analysis, 35, 487–501.

    Article  MathSciNet  Google Scholar 

  • Wang, H., Wang, L. (2009). Locally weighted censored quantile regression. Journal of the American Statistical Association, 104, 1117–1128.

    Article  MathSciNet  Google Scholar 

  • Xie, S., Wan, A., Zhou, Y. (2015). Quantile regression methods with varying-coefficient models for censored data. Computational Statistics and Data Analysis88, 154–172.

    Article  MathSciNet  Google Scholar 

  • Ying, Z., Jung, S., Wei, L. (1995). Survival analysis with median regression models. Journal of the American Statistical Association, 90, 178–184.

    Article  MathSciNet  Google Scholar 

  • Yu, K., Jones, M. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228–237.

    Article  MathSciNet  Google Scholar 

  • Zhou, L. (2006). A simple censored median regression estimator. Statistica Sinica, 16, 1043–1058.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bravo.

Additional information

I am grateful to the Associate Editor and two Referees for useful comments and suggestions that improved considerably the paper. The usual disclaimer applies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 230 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, F. Semiparametric quantile regression with random censoring. Ann Inst Stat Math 72, 265–295 (2020). https://doi.org/10.1007/s10463-018-0688-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0688-3

Keywords

Navigation