Skip to main content
Log in

New kernel estimators of the hazard ratio and their asymptotic properties

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We propose a kernel estimator of a hazard ratio that is based on a modification of Ćwik and Mielniczuk (Commun Stat-Theory Methods 18(8):3057–3069, 1989)’s method. A naive nonparametric estimator is Watson and Leadbetter (Sankhyā: Indian J Stat Ser A 26(1):101–116, 1964)’s one, which is naturally given by the kernel density estimator and the empirical distribution estimator. We compare the asymptotic mean squared error (AMSE) of the hazard estimators, and then, it is shown that the asymptotic variance of the new estimator is usually smaller than that of the naive one. We also discuss bias reduction of the proposed estimator and derived some modified estimators. While the modified estimators do not lose nonnegativity, their AMSE is small both theoretically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, S. M., Hsu, Y. S., Liaw, J. T. (2009). On kernel estimators of density ratio. Statistics, 43(5), 463–479.

    Article  MathSciNet  Google Scholar 

  • Ćwik, J., Mielniczuk, J. (1989). Estimating density ratio with application to discriminant analysis. Communications in Statistics-Theory and Methods, 18(8), 3057–3069.

    Article  MathSciNet  Google Scholar 

  • De Haan, L., Ferreira, A. (2007). Extreme value theory: An introduction. New York, NY: Springer.

  • Funke, B., Kawka, R. (2015). Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods. Computational Statistics & Data Analysis, 92, 148–162.

    Article  MathSciNet  Google Scholar 

  • Gumbel, E. (1958). Statistics of extremes. New York, NY: Columbia University Press.

    Book  Google Scholar 

  • Hirukawa, M., Sakudo, M. (2014). Nonnegative bias reduction methods for density estimation using asymmetric kernels. Computational Statistics & Data Analysis, 75, 112–123.

    Article  MathSciNet  Google Scholar 

  • Jones, M., Signorini, D. (1997). A comparison of higher-order bias kernel density estimators. Journal of the American Statistical Association, 92(439), 1063–1073.

    Article  MathSciNet  Google Scholar 

  • Jones, M. C., Linton, O., Nielsen, J. P. (1995). A simple bias reduction method for density estimation. Biometrika, 82(2), 327.

    Article  MathSciNet  Google Scholar 

  • McCune, E., McCune, S. (1987). On improving convergence rates for nonnegative kernel failure-rate function estimators. Statistics & Probability Letters, 6(2), 71–76.

    Article  MathSciNet  Google Scholar 

  • Müller, H. G., Wang, J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics, 50(1), 61.

    Article  MathSciNet  Google Scholar 

  • Murthy, V. (1965). Estimation of jumps, reliability and hazard rate. The Annals of Mathematical Statistics, 36(3), 1032–1040.

    Article  MathSciNet  Google Scholar 

  • Nielsen, J. P. (1998). Multiplicative bias correction in kernel hazard estimation. Scandinavian Journal of Statistics, 25(3), 541–553.

    Article  MathSciNet  Google Scholar 

  • Patil, P. (1993). On the least squares cross-validation bandwidth in hazard rate estimation. The Annals of Statistics, 21(4), 1792–1810.

    Article  MathSciNet  Google Scholar 

  • Quintela-del Río, A. (2007). Plug-in bandwidth selection in kernel hazard estimation from dependent data. Computational Statistics & Data Analysis, 51(12), 5800–5812.

    Article  MathSciNet  Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27(3), 832–837.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Cline, D. B. H. (1994). Bias reduction in kernel density estimation by smoothed empirical transformations. The Annals of Statistics, 22(1), 185–210.

    Article  MathSciNet  Google Scholar 

  • Tanner, M. A., Wong, W. H. (1983). The estimation of the hazard function from randomly censored data by the kernel method. The Annals of Statistics, 11(3), 989–993.

    Article  MathSciNet  Google Scholar 

  • Terrell, G. R., Scott, D. W. (1980). On improving convergence rates for nonnegative kernel density estimators. The Annals of Statistics, 8(5), 1160–1163.

    Article  MathSciNet  Google Scholar 

  • Vieu, P. (1991a). Nonparametric regression: Optimal local bandwidth choice. Journal of the Royal Statistical Society Series B (Methodological), 53(2), 453–464.

    Article  MathSciNet  Google Scholar 

  • Vieu, P. (1991b). Quadratic errors for nonparametric estimates under dependence. Journal of Multivariate Analysis, 39(2), 324–347.

    Article  MathSciNet  Google Scholar 

  • Watson, G., Leadbetter, M. (1964). Hazard analysis ii. Sankhyā: The Indian Journal of Statistics, Series A26(1), 101–116.

Download references

Acknowledgements

The authors would like to appreciate the editor’s and referees’ valuable comments that helped us to improve this manuscript significantly. The authors gratefully acknowledge JSPS KAKENHI Grant Number JP15K11995 and JP16H02790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Moriyama.

Appendices: Proofs of Theorems

Appendices: Proofs of Theorems

Proof of Theorem 1

For simplicity, we will use the following notation,

$$\begin{aligned}&\eta (z) = \int _{-\infty }^z F(u) \text {d}u ,\quad \gamma (z) = \int _{-\infty }^z \eta (u) \text {d}u, \\&M(z) = z -\eta (z) \quad \mathrm{and}\quad m(z) =M'(z) =1-F(z). \end{aligned}$$

To begin with, we consider the following stochastic expansion of the direct estimator:

$$\begin{aligned}&\widehat{H}(x_0) \\&\quad =\frac{1}{h} \int K\left( \frac{M(w) -M(x_0) }{h} \right) \text {d}F_n(w) \\&\qquad +\, \frac{1}{h^2} \int K'\left( \frac{M(w) -M(x_0) }{h} \right) \bigg \{[\eta (w) -\eta _n(w)] -[\eta (x_0) -\eta _n(x_0)] \bigg \} \text {d}F_n(w) \\&\qquad +\, \frac{1}{h^3} \int K''\left( \frac{M(w) -M(x_0) }{h} \right) \bigg \{[\eta (w) -\eta _n(w)] -[\eta (x_0) -\eta _n(x_0)] \bigg \}^2 \text {d}F_n(w) \\&\qquad +\, \frac{1}{h^4} \int K^{(3)}\left( \frac{M_n^*(w) -M(x_0) }{h} \right) \bigg \{[\eta (w) -\eta _n(w)] -[\eta (x_0) -\eta _n(x_0)] \bigg \}^3 \text {d}F_n(w) \\&\quad = J_1 + J_2 + J_3 + J_4^* \quad (\mathrm{say}), \end{aligned}$$

where

$$\begin{aligned} \eta _n (w)= \int _{-\infty }^w F_n(u) \text {d}u = \frac{1}{n}\sum _{i=1}^n (w- X_i)_+ \end{aligned}$$

and \(M_n^*(w)\) is a r.v. between \(M_n(w)\) and M(w) with probability 1.

The main term of the expectation of \(\widehat{H}(x_0)\) is given by \(J_1\), as we will show the later. Since \(J_1\) is a sum of i.i.d. random variables, the expectation can be obtained directly:

$$\begin{aligned} E[J_1]= & {} E \left[ \frac{1}{h} \int K\left( \frac{M(w) -M(x_0) }{h} \right) \text {d}F_n(w) \right] \\= & {} \frac{1}{h} \int K\left( \frac{M(w) -M(x_0) }{h} \right) f(w) \text {d}w \\= & {} \int K(u) H(M^{-1} (M(x_0) +h u)) \text {d}u \\= & {} H(x_0) +\frac{h^2}{2} A_{1,2} \left[ \frac{(1 -F)\{(1-F)f'' +4f f' \} +3f^3}{(1 -F)^5}\right] (x_0) + O(h^4). \end{aligned}$$

Combining the following second moment,

$$\begin{aligned}&\frac{1}{n h^2} \int K^2\left( \frac{M(w) - M(x_0) }{h} \right) f(w) \text {d}w \\&\quad = \frac{1}{n h}\int K^2(u) H(M^{-1} (M(x_0) +h u)) \text {d}u \\&\quad = \frac{A_{2,0}}{n h} H(x_0) +O(n^{-1}), \end{aligned}$$

we get the variance,

$$\begin{aligned} V[J_1] = \frac{1}{n h} H(x_0) A_{2,0} +O(n^{-1}). \end{aligned}$$

Next, we consider the following representation of \(J_2\)

$$\begin{aligned} J_2 = \frac{1}{n^2 h^2} \sum _{i=1}^n \sum _{j=1}^n K'\left( \frac{M(X_i) -M(x_0) }{h} \right) Q(X_i,X_j), \end{aligned}$$

where

$$\begin{aligned} Q(x_i,x_j) =[\eta (x_i) -(x_i -x_j)_{+}] -[\eta (x_0) -(x_0 -x_j)_{+}]. \end{aligned}$$

Using the conditional expectation, we get the following equation:

$$\begin{aligned} E[J_2]= & {} \frac{1}{n h^2} \sum _{j=1}^n E\left[ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) Q(X_i,X_j) \right] \\= & {} \frac{1}{n h^2} E\left[ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) E\left[ \sum _{j=1}^n Q(X_i,X_j) \Bigm | X_i \right] \right] \\= & {} \frac{1}{n h^2} E\left[ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) \left\{ \eta (X_i) -\left[ \eta (x_0) -(x_0-X_i)_{+} \right] \right\} \right] \\= & {} \frac{1}{n h} \int K'\left( u \right) \left\{ \eta (M^{-1} (M(x_0) +h u)) -\eta (x_0) +(x_0-M^{-1} (M(x_0) +h u))_{+} \right\} \\&\quad \times \, H(M^{-1} (M(x_0) +h u)) \text {d}u\\= & {} \frac{1}{n h} \int K'\left( u \right) O(h u) H(x_0) \text {d}u = O\left( \frac{1}{n}\right) . \end{aligned}$$

Next, we have

$$\begin{aligned} J_2^2= & {} \frac{1}{n^4 h^4} \sum _{i=1}^n \sum _{j=1}^n \sum _{s=1}^n \sum _{t=1}^n K'\left( \frac{M(X_i) -M(x_0) }{h} \right) K'\left( \frac{M(X_s) -M(x_0) }{h} \right) \\&\times \, Q(X_i,X_j) Q(X_s,X_t) \\= & {} \frac{1}{n^4 h^4} \sum _{i=1}^n \sum _{j=1}^n \sum _{s=1}^n \sum _{t=1}^n \varXi (i,j,s,t)\quad (\mathrm{say}). \end{aligned}$$

After taking the conditional expectation, we find that if all of the (ijst) are different,

$$\begin{aligned} E[\varXi (i,j,s,t)] = E\left[ E\left\{ \varXi (i,j,s,t) | X_i,X_s\right\} \right] = 0, \end{aligned}$$

and

$$\begin{aligned}&E[\varXi (i,j,s,t)]=0 \quad (\text {if }i=j\text { and all of }(i,s,t)\text { are different}),\\&E[\varXi (i,j,s,t)]=0 \quad (\text {if }i=s\text { and all of }(i,j,t)\text { are different}),\\&E[\varXi (i,j,s,t)]=0 \quad (\text {if }i=t\text { and all of }(i,j,s)\text { are different}), \end{aligned}$$

the term in which \(j=t\) and all of the (ijs) are different is the main term of \(E[J_2^2]\). If \(j=t\) and all of the (ijs) are different, we have

$$\begin{aligned}&E[\varXi (i,j,s,t)] \\&\quad = \frac{n(n-1)(n-2)}{n^4 h^4} E\biggl [ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) K'\left( \frac{M(X_s) -M(x_0) }{h} \right) \\&\qquad \times \, Q(X_i,X_j) Q(X_s,X_j) \biggl ]. \end{aligned}$$

Using the conditional expectation of \(Q(X_i,X_j) Q(X_s,X_j)\) given \(X_i\) and \(X_s\), we find that

$$\begin{aligned}&E\Bigl [ E\Bigl \{ Q(X_i,X_j) Q(X_s,X_j) \Bigm | X_i, X_s\Bigl \} \Bigl ] \\&\quad =E\Bigl [ \eta (X_i)\eta (x_0) +\eta (X_s)\eta (x_0) -\eta ^2(x_0) +2\gamma (x_0) -\eta (X_i)\eta (X_s) \\&\qquad -\,(x +X_i -2\min (x ,X_i))\eta (\min (x ,X_i)) -2\gamma (\min (x ,X_i)) \\&\qquad -\,(x +X_s -2\min (x ,X_s))\eta (\min (x ,X_s)) -2\gamma (\min (x ,X_s)) \\&\qquad +\,(X_i +X_s -2\min (X_i ,X_s))\eta (\min (X_i ,X_s)) +2\gamma (\min (X_i ,X_s)) \Bigl ]. \end{aligned}$$

Therefore, the entire expectation of the last row is

$$\begin{aligned}&E\biggl [ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) K'\left( \frac{M(X_s) -M(x_0) }{h} \right) \\&\qquad \times \, (X_i +X_s -2\min (X_i ,X_s))\eta (\min (X_i ,X_s)) +2\gamma (\min (X_i ,X_s)) \Bigl ]\\&\quad =\int \Biggl [ \int _{\infty }^w K'\left( \frac{M(z) -M(x_0) }{h} \right) K'\left( \frac{M(w) -M(x_0) }{h} \right) \\&\qquad \times \, \bigg \{ (-z+w)\eta (z) + 2\gamma (z) \bigg \} f(w) \text {d}z \\&\qquad +\int _{w}^{\infty } K'\left( \frac{M(z) -M(x_0) }{h} \right) K'\left( \frac{M(w) -M(x_0) }{h}\right) \\&\qquad \times \,\left\{ (z-w)\eta (w) + 2\gamma (w) \right\} f(z) dz \Biggr ] f(w) \text {d}w. \\ \end{aligned}$$

Finally, we get

$$\begin{aligned}&E\biggl [ K'\left( \frac{M(X_i) -M(x_0) }{h} \right) K'\left( \frac{M(X_s) -M(x_0) }{h} \right) \\&\qquad \times \, \{X_i +X_s -2\min (X_i ,X_s)\}\eta (\min (X_i ,X_s)) +2\gamma (\min (X_i ,X_s)) \Bigl ]\\&\quad = -h^2 \int K'\left( \frac{M(w) -M(x_0) }{h} \right) f(w) \text {d}w\\&\qquad \times \, \Biggl ( \Biggm [W\left( \frac{M(w) -M(x_0) }{h}\right) \biggl ( \left\{ \eta (x_0) +(-x_0 +w)F(x_0) \right\} \left[ \frac{f}{m^2}\right] (x_0) \\&\qquad +\,\{(-x_0 +w) \eta (x_0) +2\gamma (x_0)\} \left[ \frac{f'm -fm'}{m^3}\right] (x_0) \biggl ) +O(h)\Biggm ] \\&\qquad +\,\Biggm [\left( 1 -W\left( \frac{M(w) -M(x_0) }{h} \right) \right) \\&\qquad \times \,\left( \eta (w) \frac{f}{m^2}(x_0) +\{(x_0-w) \eta (w)+ 2\gamma (w)\}\left[ \frac{f'm -fm'}{m^3}\right] (x_0) \right) +O(h) \Biggm ] \Biggl )\\&\quad = h^4 \left[ \frac{Ff^2}{m^4}(x_0) +\left\{ \frac{f'm -fm'}{m^3} \left( 2\eta \frac{f}{m^2} +2\gamma \frac{f'm -fm'}{m^3} \right) \right] (x_0) \right\} +O(h^5). \end{aligned}$$

After similar calculations of the other terms, we find that if \(j=t\) and all of the (ijs) are different,

$$\begin{aligned} E[\varXi (i,j,s,t)] = O\left( \frac{1}{n}\right) . \end{aligned}$$

In addition, it is easy to see that the expectations of the other combinations of (ijst) are \(o(n^{-1})\). As a result, we have

$$\begin{aligned} E[J_2^2] = O(n^{-1}) \quad \text {and}\quad V[J_2] = O(n^{-1}). \end{aligned}$$

The moments of \(J_3\) can be obtained in a similar manner; we find that

$$\begin{aligned} E[J_3] = O(n^{-1}) \quad \text {and}\quad V[J_3] = O(n^{-2}). \end{aligned}$$

Finally, we will obtain upper bounds of \(|E[J_4^*]|\) and \(E[{(J_4^*)}^2]\). From the assumption of Theorem 1, we can see

$$\begin{aligned}&\left| E \left[ \frac{1}{h^4} K^{(3)}\left( \frac{M_n^*(X_i) -M(x_0) }{h} \right) \{[\eta (X_i) -\eta _n(X_i)] -[\eta (x_0) -\eta _n(x_0)] \}^3 \right] \right| \\&\quad \le \frac{\max _{u} |K^{(3)}(u)|}{h^4} E \left[ \{[\eta (X_i) -\eta _n(X_i)] -[\eta (x_0) -\eta _n(x_0)] \}^3 \right] \\&\quad = O\left( \frac{1}{n^2 h^4}\right) . \end{aligned}$$

Similarly, it follows that

$$\begin{aligned}&E[{(J_4^*)}^2] \\&\quad = \frac{1}{h^8} E \left[ \left( \int K^{(3)}\left( \frac{M_n^*(w) -M(x_0) }{h} \right) \{[\eta (w) -\eta _n(w)] -[\eta (x_0) -\eta _n(x_0)] \}^3 \text {d}F_n(w) \right) ^2\right] \\&\quad \le \frac{\max _{u} (K^{(3)}(u))^2}{n^2 h^8} \sum _{i=1}^n \sum _{j=1}^n E \Bigm [\{[\eta (X_i) -\eta _n(X_i)] -[\eta (x_0) -\eta _n(x_0)] \}^3 \\&\qquad \times \, \bigg \{[\eta (X_j) -\eta _n(X_j)] -[\eta (x_0) -\eta _n(x_0)] \bigg \}^3 \Bigm ] \\&\quad = O\left( \frac{1}{n^4 h^8}\right) . \end{aligned}$$

To sum up, we conclude that \(J_2 + J_3 + J_4^*\) is asymptotically negligible for fixed \(x_0\). The main bias of \(\widehat{H}(x_0)\) comes from \(J_1\). From the Cauchy–Schwarz inequality, we find that the main term of the variance coincides with \(V[J_1]\). Now, we can get the AMSE of the direct estimator and prove Theorem 1. \(\square \)

Proof of Theorems 2 and 3

It follows from the above discussion that

$$\begin{aligned}&\sqrt{n h} \left\{ \widehat{H}(x_0) -H(x_0) \right\} \\&\quad = \sqrt{n h} \big \{ J_1 -H(x_0) \big \} +o_P(1) \\&\quad = (\sqrt{n h} h^2) B_1 + \sqrt{n h} \left\{ J_1 -H(x_0)-h^2 B_1 \right\} +o_P(1). \end{aligned}$$

Since \(J_1\) is a sum of i.i.d. random variables and the expectation of the second term is o(1), asymptotic normality holds for Theorem 2. \(\square \)

Furthermore, we can show that

$$\begin{aligned} E \left[ \widehat{H}(x_0) \right]= & {} E[J_1] +O(n^{-1}) \\= & {} \int K(u) H(M^{-1} (M(x_0) +h u)) \text {d}u +O(n^{-1}), \end{aligned}$$

and we can directly get Theorem 3 by taking a Taylor expansion. \(\square \)

Proof of Theorem 4

We follow the proof of Jones et al. (1995). \(\widehat{H}_{N}(x_0)\) is written as

$$\begin{aligned} \widehat{H}_{N}(x_0) = \widehat{H}(x_0)\widehat{\alpha }(x_0) = H(x_0)\left\{ 1+\frac{\widehat{H}(x_0) -H(x_0)}{H(x_0)} \right\} \{1+(\widehat{\alpha }(x_0)-1)\}. \end{aligned}$$

It follows from the asymptotic expansion that

$$\begin{aligned} \widehat{\alpha }(x_0)\approx & {} \frac{1}{n} \sum _{i=1}^n \frac{1}{h{H}(X_i)} K\left( \frac{M_n(x_0) - M_n(X_i) }{h} \right) \\&\times \,\left[ 1 - \frac{\widehat{H}(X_i) -H(X_i)}{H(X_i)} + \left\{ \frac{\widehat{H}(X_i) -H(X_i)}{H(X_i)} \right\} ^2 \right] . \end{aligned}$$

By taking the expectation of the ith term in this sum conditional on \(X_i\), we have

$$\begin{aligned}&E\Biggm [\frac{1}{h{H}(X_i)} K\left( \frac{M_n(x_0) - M_n(X_i) }{h} \right) \\&\qquad \times \, \left[ 1 - \frac{\widehat{H}(X_i) -H(X_i)}{H(X_i)} + \left\{ \frac{\widehat{H}(X_i) -H(X_i)}{H(X_i)} \right\} ^2 \right] \Biggm | X_i \Biggm ]\\&\quad =\frac{1}{h{H}(X_i)} K\left( \frac{M(x_0) - M(X_i) }{h} \right) \left[ 1 - \frac{h^2 B_1(X_i) + h^4 B_2(X_i)}{H(X_i)} + \left( \frac{h^2 B_1(X_i)}{H(X_i)}\right) ^2\right] \\&\qquad +\, O_P((nh)^{-1}) + o_P(h^4). \end{aligned}$$

Thus, we have

$$\begin{aligned} E[\widehat{\alpha }(x_0)]= & {} 1 - h^2 \frac{B_1}{H}(M^{-1}(M(x_0)+ hu)) \\&+\, h^4 \biggm [ -\,\frac{B_2(x_0)}{H(x_0)} + \left( \frac{B_1(x_0)}{H(x_0)}\right) ^2 \biggm ] + O((nh)^{-1}) + o(h^4) \\= & {} 1 - h^2 {C_1}(x_0) \\&+\, h^4 \biggm [ -\,\frac{B_2(x_0)}{H(x_0)} + \left( \frac{B_1(x_0)}{H(x_0)}\right) ^2 + \frac{C_1''}{2 m^3}(x_0) - \frac{C_1 m''}{2 m^4}(x_0) \\&-\,3\frac{C_1'm'}{2m^4}(x_0) +3\frac{C_1(m')^2}{2m^5}(x_0) \biggm ] +\, O((nh)^{-1}) + o(h^4). \end{aligned}$$

It follows that

$$\begin{aligned}&E[\widehat{H}_{N}(x_0) -H(x_0)] \\&\quad = h^2 B_1(x_0) + h^4 [ B_2(x_0) - B_1(x_0) C_1(x_0)] - h^2 H(x_0) {C_1}(x_0) \\&\qquad +\, h^4 H(x_0) \biggm [ -\frac{B_2(x_0)}{H(x_0)} + \left( \frac{B_1(x_0)}{H(x_0)}\right) ^2 + \frac{C_1''}{2 m^3}(x_0) - \frac{C_1 m''}{2 m^4}(x_0) \\&\qquad -\,3\frac{C_1'm'}{2m^4}(x_0) +3\frac{C_1(m')^2}{2m^5}(x_0) \biggm ] + O((nh)^{-1}) + o(h^4) \\&\quad = h^4 H(x_0) \biggm [ \frac{C_1''}{2 m^3}(x_0) - \frac{C_1 m''}{2 m^4}(x_0) -3\frac{C_1'm'}{2m^4}(x_0) +3\frac{C_1(m')^2}{2m^5}(x_0) \biggm ] \\&\qquad +\, O((nh)^{-1}) + o(h^4). \end{aligned}$$

From the proof of Theorem 1, we can see that the following approximation holds:

$$\begin{aligned} \widehat{H}_{N}(x_0)= & {} \frac{1}{n^2h}\sum _{i=1}^n \sum _{j=1}^n K\left( \frac{M_n(x_0) - M_n(X_i) }{h} \right) \frac{K\left( \frac{M_n(x_0) - M_n(X_j) }{h} \right) }{\sum _{\ell =1}^n K\left( \frac{M_n(X_j) - M_n(X_{\ell }) }{h} \right) } \\\approx & {} \frac{1}{n^2h} \sum _{i=1}^n \sum _{j=1}^n K\left( \frac{M(x_0) - M(X_i) }{h} \right) \frac{K\left( \frac{M(x_0) - M(X_j) }{h} \right) }{\sum _{\ell =1}^n K\left( \frac{M(X_j) - M(X_{\ell }) }{h} \right) } \\=: & {} H_N(x_0) \end{aligned}$$

\(H_N(x_0)\) can be seen as a Jones et al. (1995)’s density estimate for the random variable M(X) at the point \(M(x_0)\). Then, the asymptotic variance is given by

$$\begin{aligned} V[\widehat{H}_{N}(x_0)] \approx \frac{H(x_0)}{nh} \int \bigg \{ 2K(u) - K*K(u) \bigg \}^2 \text {d}u \end{aligned}$$

(see Jones et al. 1995). \(\square \)

Proof of Theorem 5

To obtain the asymptotic variance of the modified estimator \(\widehat{H}^{\dagger }\), we need to calculate the covariance term \(Cov[\widehat{H}_h(x_0), \widehat{H}_{2h}(x_0)]\) as shown in Sect. 4. From the proof of Theorem 1, it is easy to see

$$\begin{aligned}&Cov \left[ \widehat{H}_h(x_0), \widehat{H}_{2h}(x_0) \right] \\&\quad = E\left[ \widehat{H}_h(x_0)\widehat{H}_{2h}(x_0) \right] - E\left[ \widehat{H}_h(x_0) \right] E\left[ \widehat{H}_{2h}(x_0) \right] \\&\quad = \frac{1}{2n^2h^2} E\left[ \sum _{i=1}^{n} \sum _{j=1}^{n} K\left( \frac{M(X_i) -M(x_0)}{h}\right) K\left( \frac{M(X_j) -M(x_0)}{2h}\right) \right] \\&\qquad - \left\{ H^2(x_0) + 5 h^2 H(x_0) B_1(x_0) + O(h^4 + n^{-1})\right\} + O\left( \frac{1}{n h^{1/2}} \right) . \end{aligned}$$

Consequently, we have

$$\begin{aligned}&Cov \left[ \widehat{H}_h(x_0), \widehat{H}_{2h}(x_0) \right] \\&\quad = \frac{1}{2n h^2} E\left[ K\left( \frac{M(X_1) -M(x_0)}{h}\right) K\left( \frac{M(X_1) -M(x_0)}{2h}\right) \right] \\&\qquad -\,\frac{1}{n} \left\{ H^2(x_0) + 5 h^2 H(x_0) B_1(x_0) + O(h^4 + n^{-1})\right\} + O\left( \frac{1}{n h^{1/2}} \right) \\&\quad = \frac{1}{nh} H(x_0) \int K(2u) K(u) \text {d}u + O\left( \frac{1}{n h^{1/2}} \right) \end{aligned}$$

and the desired result. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriyama, T., Maesono, Y. New kernel estimators of the hazard ratio and their asymptotic properties. Ann Inst Stat Math 72, 187–211 (2020). https://doi.org/10.1007/s10463-018-0685-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0685-6

Keywords

Navigation