Skip to main content
Log in

CUSUM test for general nonlinear integer-valued GARCH models: comparison study

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This study considers the problem of testing a parameter change in general nonlinear integer-valued time series models where the conditional distribution of current observations is assumed to follow a one-parameter exponential family. We consider score-, (standardized) residual-, and estimate-based CUSUM tests and show that their limiting null distributions take the form of the functions of Brownian bridges. Based on the obtained results, we then conduct a comparison study of the performance of CUSUM tests through the use of Monte Carlo simulations. Our findings demonstrate that the standardized residual-based CUSUM test largely outperforms the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Osh, M. A., Aly, E.-E. A. (1992). First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics-Theory and Methods, 21(9), 2483–2492.

  • Alzaid, A., Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR(p)) process. Journal of Applied Probability, 27, 314–324.

  • Berkes, I., Horvth, L., Kokoszka, P. (2004). Testing for parameter constancy in GARCH(p, q) models. Statistics & Probability Letters, 70(4), 263–273.

  • Chen, C. W., Lee, S. (2016). Generalized Poisson autoregressive models for time series of counts. Computational Statistics & Data Analysis, 99, 51–67.

  • Christou, V., Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis, 35(1), 55–78.

  • Csörgö, M., Horváth, L. (1997). Limit theorems in change-point analysis (Vol. 18). New York: Wiley.

  • Davis, R. A., Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica, 26(4), 1673–1707.

  • Davis, R. A., Wu, R. (2009). A negative binomial model for time series of counts. Biometrika, 96(3), 735–749.

  • Diop, M. L., Kengne, W. (2017). Testing parameter change in general integer-valued time series. Journal of Time Series Analysis, 38(6), 880–894.

  • Doukhan, P., Fokianos, K., Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics & Probability Letters, 82(5), 942–948.

  • Doukhan, P., Fokianos, K., Tjøstheim, D. (2013). Correction to “On weak dependence conditions for Poisson autoregressions”. Statistics & Probability Letters, 83(8), 1926–1927.

  • Ferland, R., Latour, A., Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27(6), 923–942.

  • Fokianos, K., Fried, R. (2010). Interventions in INGARCH processes. Journal of Time Series Analysis, 31(3), 210–225.

  • Fokianos, K., Fried, R. (2012). Interventions in log-linear Poisson autoregression. Statistical Modelling, 12(4), 299–322.

  • Fokianos, K., Rahbek, A., Tjøstheim, D. (2009). Poisson autoregression. Journal of American Statistical Association, 104(488), 1430–1439.

  • Fokianos, K., Gombay, E., Hussein, A. (2014). Retrospective change detection for binary time series models. Journal of Statistical Planning & Inferences, 145, 102–112.

  • Francq, C., Zakoïan, J.-M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli, 10(4), 605–637.

  • Franke, J., Kirch, C., Kamgaing, J. T. (2012). Changepoints in times series of counts. Journal of Time Series Analysis, 33(5), 757–770.

  • Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187.

  • Hudecová, Š. (2013). Structural changes in autoregressive models for binary time series. Journal of Statistical Planning & Inferences, 143(10), 1744–1752.

    Article  MathSciNet  MATH  Google Scholar 

  • Hudecová, Š., Hudecová, M., Meintanis, S. (2016). Change detection in INARCH time series of counts. In R. Cao, W. Gonzalez Manteiga, J. Romo (Ed.), Nonparametric Statistics (Vol. 175, pp. 47–58).

  • Huh, J., Kim, H., Lee, S. (2017). Monitoring parameter shift with Poisson integer-valued GARCH models. Journal of Statistical Computation & Simulation, 87(9), 1754–1766.

  • Kang, J., Lee, S. (2009). Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis. Journal of Time Series Analysis, 30(2), 239–258.

  • Kang, J., Lee, S. (2014). Parameter change test for Poisson autoregressive models. Scandinavian Journal of Statistics, 41(4), 1136–1152.

  • Kim, H., Lee, S. (2017). On first-order integer-valued autoregressive process with Katz family innovations. Journal of Statistical Computation & Simulation, 87(3), 546–562.

  • Lee, S., Lee, J. (2015). Parameter change test for nonlinear time series models with GARCH type errors. Journal of Korean Mathematical Society, 52(23), 503–553.

  • Lee, S., Ha, J., Na, O., Na, S. (2003). The cusum test for parameter change in time series models. Scandinavian Journal of Statistics, 30(4), 781–796.

  • Lee, S., Tokutsu, Y., Maekawa, K. (2004). The cusum test for parameter change in regression models with ARCH errors. Journal of Japan Statistical Society, 34(2), 173–188.

  • Lee, S., Lee, Y., Chen, C. W. (2016). Parameter change test for zero-inflated generalized Poisson autoregressive models. Statistics, 50(3), 1–18.

  • Lee, Y., Lee, S., Tjøstheim, D. (2018). Asymptotic normality and parameter change test for bivariate Poisson INGARCH models. TEST, 27(1), 52–69.

  • McKenzie, E. (1985). Some simple models for discrete variate time series1. Journal of American Water Resource Association, 21(4), 645–650.

    Article  Google Scholar 

  • McKenzie, E. (2003). Ch. 16. Discrete variate time series. Handbook of statistics, 21, 573–606.

    Article  MATH  Google Scholar 

  • Neumann, M. H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli, 17(4), 1268–1284.

    Article  MathSciNet  MATH  Google Scholar 

  • Oh, H., Lee, S. (2017). On score vector- and residual-based CUSUM tests in ARMA-GARCH models. Statistical Methods & Applications: Online published.

  • Oh, H., Lee, S. (2018). Modified residual CUSUM test for location-scale time series models with heteroscedasticity. Accepted.

  • Weiß, C. H. (2008). Thinning operations for modeling time series of counts-a survey. AStA-Advances Statistical Analysis, 92(3), 319–341.

    Article  MathSciNet  Google Scholar 

  • Weiß, C. H., Testik, M. C. (2009). Cusum monitoring of first-order integer-valued autoregressive processes of Poisson counts. Journal of Quality Technology, 41(4), 389–400.

  • Weiß, C. H., Testik, M. C. (2011). The Poisson INAR(1) CUSUM chart under overdispersion and estimation error. IIE Transactions, 43(11), 805–818.

  • Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis, 32(1), 54–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, F. (2012a). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis & Applications, 389(1), 58–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, F. (2012b). Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of Statistical Planning & Inferences, 142(4), 826–839.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Editor, an AE, and two referees for their careful reading and valuable comments. This research is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2018R1A2A2A05019433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyeol Lee.

Appendix : Proofs of Theorems 1 and 2

Appendix : Proofs of Theorems 1 and 2

Before proving Theorems 1 and 2, we prepare some lemmas. In what follows, we use notation \(\eta _t^0 = \eta _t(\theta _0)\) and \( \eta _t^n= \eta _t(\hat{\theta }_n)\).

Lemma 1

Suppose that conditions (A0), (A6), and (A10) hold. Then, we have

$$\begin{aligned} \sup _{\theta \in \Theta }|\tilde{X}_t(\theta ) - X_t (\theta )| \le V\rho ^t, \,\,\,\, \sup _{\theta \in \Theta }| \tilde{\eta }_t - \eta _t |\le V\rho ^t\,\,\,\,\, a.s. \end{aligned}$$

Proof

Note that

$$\begin{aligned} |\tilde{X}_t (\theta ) - X_t (\theta )|= & {} \left| f_{\theta }(\tilde{X}_{t-1}(\theta ), Y_{t-1}) -f_{\theta }( X_{t-1}(\theta ), Y_{t-1}) \right| \\\le & {} \omega _1 |\tilde{X}_{t-1}(\theta ) - X_{t-1} (\theta )| \le \omega _1^{t-1} |\tilde{X}_1 - X_1 (\theta )|. \end{aligned}$$

Then, using the mean value theorem and (A10), we have

$$\begin{aligned} | \tilde{\eta }_t - \eta _t |= & {} |B^{-1}(\tilde{X}_t(\theta )) - B^{-1}(X_t (\theta )) | \le \frac{\omega _1^{t-1}}{B^{\prime }(\eta _t^*)} |\tilde{X}_1 - X_1(\theta )|\\\le & {} \frac{\omega _1^{t-1}}{\underline{c}} |\tilde{X}_1 - X_1(\theta )|, \end{aligned}$$

where \(\eta _t^* = B^{-1}(X_t^*)\) and \(X_t^*\) is an intermediate point between \(\tilde{X}_t(\theta )\) and \(X_t(\theta )\). Hence, using (A6), we establish the lemma. \(\square \)

Lemma 2

Suppose that (A0)–(A13) hold. Then, under \(H_0\), as \(n\rightarrow \infty \),

$$\begin{aligned}&\mathrm {(i)}&\sup _{\theta \in \Theta } \left| \frac{1}{n} \sum _{t=1}^n \tilde{\ell }_t (\theta ) -\frac{1}{n} \sum _{t=1}^n \ell _t (\theta ) \right| \longrightarrow 0 \,\,\,\,\,a.s.;\\&\mathrm {(ii)}&\left\| \frac{1}{\sqrt{n}} \sum _{t=1}^n \frac{\partial \tilde{\ell }_t (\theta _0)}{\partial \theta } - \frac{1}{\sqrt{n}} \sum _{t=1}^n \frac{\partial \ell _t (\theta _0)}{\partial \theta } \right\| = o_P(1); \\&\mathrm {(iii)}&\sup _{\theta \in \Theta } \left\| \frac{\partial ^2 \tilde{\ell }_t (\theta )}{\partial \theta \partial \theta ^T } - \frac{\partial ^2 \ell _t (\theta )}{\partial \theta \partial \theta ^T } \right\| \longrightarrow 0 \,\,\,\,\, a.s.\,\,as\,\, t \rightarrow \infty ;\\&\mathrm {(iv)}&- \frac{1}{n} \frac{\partial ^2 \tilde{L}_n (\theta _n^*)}{\partial \theta \partial \theta ^T} \longrightarrow I(\theta _0)\,\,\,\,\,\,a.s., \end{aligned}$$

where \(\theta _n^*\) is the intermediate point \(\hat{\theta }_n\) and \(\theta _0\).

Proof

(i) It suffices to show that

$$\begin{aligned} \sup _{\theta \in \Theta } |\tilde{\ell }_t(\theta ) - \ell _t(\theta ) | \rightarrow 0\ \ a.s.\ \ \text{ as }\,\,\, t \rightarrow \infty . \end{aligned}$$
(8)

Note that, by the mean value theorem, (A10), and Lemma 1,

$$\begin{aligned} | \tilde{\ell }_t(\theta ) - \ell _t(\theta ) |\le & {} | \tilde{\eta }_t - \eta _t| Y_t + |A(\tilde{\eta }_t) - A(\eta _t)|\\= & {} |B^{-1}(\tilde{X}_t(\theta )) - B^{-1}( X_t(\theta )) | Y_t\\&+ | A(B^{-1}(\tilde{X}_t(\theta )) ) - A(B^{-1}(X_t(\theta )) )| \\\le & {} \frac{Y_t + X_t^*}{B'(\eta _t^*)} |\tilde{X}_t(\theta ) - X_t(\theta )| \le \frac{Y_t + X_t^*}{\underline{c}} V\rho ^t \end{aligned}$$

for some intermediate points \(X_t^*\) between \(X_t(\theta )\) and \(\tilde{X}_t(\theta )\) and \(\eta _t^* = B^{-1}(X_t^*)\). Since

$$\begin{aligned} Y_t + X_t^* \le Y_t + X_t(\theta ) + |\tilde{X}_t(\theta ) - X_t(\theta )| \le Y_t + X_t(\theta ) + V\rho ^t, \end{aligned}$$

according to (A6), we can show that (8) holds.

(ii) Note that

$$\begin{aligned} \frac{\partial \ell _t(\theta )}{\partial \theta } = \left( Y_t - B(\eta _t) \right) \frac{\partial \eta _t}{\partial \theta } := U_t(\theta )\frac{\partial \eta _t}{\partial \theta }. \end{aligned}$$

Hence, we have

$$\begin{aligned}&\left\| \frac{1}{\sqrt{n}} \sum _{t=1}^n \frac{\partial \tilde{\ell }_t (\theta _0)}{\partial \theta } - \frac{1}{\sqrt{n}} \sum _{t=1}^n \frac{\partial \ell _t (\theta _0)}{\partial \theta } \right\| \nonumber \\&\quad \le \left\| \frac{1}{\sqrt{n}} \sum _{t=1}^n \tilde{U}_t(\theta _0 ) \left( \frac{\partial \tilde{\eta }_t^0}{\partial \theta } -\frac{\partial \eta _t^0}{\partial \theta }\right) \right\| + \left\| \frac{1}{\sqrt{n}} \sum _{t=1}^n \left( \tilde{U}_t(\theta _0)-U_t(\theta _0)\right) \frac{\partial \eta _t^0}{\partial \theta } \right\| .\qquad \end{aligned}$$
(9)

Using (A6), (A7), (A9)–(A11), Lemma 1, and the following facts: \(|\tilde{U}_t (\theta )|\le |U_t(\theta )| + V\rho ^t\) and

$$\begin{aligned} \left\| \frac{\partial \tilde{\eta }_t^0}{\partial \theta } -\frac{\partial \eta _t^0}{\partial \theta } \right\|= & {} \left\| \frac{1}{B^{\prime }(\tilde{\eta }_t^0)} \frac{\partial \tilde{X}_t (\theta _0)}{\partial \theta }- \frac{1}{B^{\prime }(\eta _t^0)} \frac{\partial X_t (\theta _0)}{\partial \theta } \right\| \\\le & {} \frac{1}{B^{\prime }(\tilde{\eta }_t^0)} \left\| \frac{\partial \tilde{X}_t (\theta _0)}{\partial \theta }-\frac{\partial X_t (\theta _0)}{\partial \theta } \right\| + \left| \frac{1}{B^{\prime }(\tilde{\eta }_t^0)} - \frac{1}{B^{\prime }(\eta _t^0)} \right| \left\| \frac{\partial X_t (\theta _0)}{\partial \theta } \right\| , \end{aligned}$$

we can see that the first term of (9) is \(o_P(1)\).

On the other hand, by Lemma 1, the second term of (9) is bounded by

$$\begin{aligned} \left\| \frac{1}{\sqrt{n}} \sum _{t=1}^n \left( \tilde{X}_t(\theta _0)-X_t(\theta _0)\right) \frac{\partial \eta _t^0}{\partial \theta } \right\| \le \frac{1}{\sqrt{n}} \sum _{t=1}^n \left\| \frac{\partial \eta _t^0}{\partial \theta } \right\| V\rho ^t, \end{aligned}$$

which is \(o_P (1)\) due to (A7) and (A10).

(iii) Note that

$$\begin{aligned} \frac{\partial ^2 \ell _t(\theta )}{\partial \theta \partial \theta ^T} = -B^{\prime }(\eta _t) \frac{\partial \eta _t}{\partial \theta }\frac{\partial \eta _t}{\partial \theta ^T} + U_t(\theta )\frac{\partial ^2 \eta _t}{\partial \theta \partial \theta ^T}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \left\| \frac{\partial ^2 \tilde{\ell }_t(\theta )}{\partial \theta \partial \theta ^T} - \frac{\partial ^2 \ell _t(\theta )}{\partial \theta \partial \theta ^T} \right\|\le & {} \left\| B^{\prime }(\tilde{\eta }_t) \left( \frac{\partial \tilde{\eta }_t}{\partial \theta } - \frac{\partial \eta _t}{\partial \theta } \right) \frac{\partial \tilde{\eta }_t}{\partial \theta ^T} \right\| + \left\| B^{\prime }(\tilde{\eta }_t) \frac{\partial \eta _t}{\partial \theta } \left( \frac{\partial \tilde{\eta }_t}{\partial \theta ^T} - \frac{\partial \eta _t}{\partial \theta ^T} \right) \right\| \nonumber \\&+ \left\| \left\{ B^{\prime }(\tilde{\eta }_t)-B^{\prime }(\eta _t) \right\} \frac{\partial \eta _t}{\partial \theta } \frac{\partial \eta _t}{\partial \theta ^T} \right\| + \left\| \tilde{U}_t(\theta ) \left( \frac{\partial ^2 \tilde{\eta }_t}{\partial \theta \partial \theta ^T} - \frac{\partial ^2 \eta _t}{\partial \theta \partial \theta ^T} \right) \right\| \nonumber \\&+ \left\| \left\{ \tilde{X}_t (\theta )- X_t (\theta ) \right\} \frac{\partial ^2 \eta _t}{\partial \theta \partial \theta ^T} \right\| . \end{aligned}$$
(10)

Since \(B^{\prime }(\eta _t)\partial \eta _t / \partial \theta = \partial X_t(\theta )/\partial \theta \), the first and second terms of the RHS of (10) converge to 0 a.s. as \(t \rightarrow \infty \) because of (A7), (A9), and (A10). On the other hand, the fourth and fifth terms converge to 0 a.s. as \(t \rightarrow \infty \) owing to (A6), (A7), (A9), and Lemma 1. Due to (A11), we have

$$\begin{aligned} \left\| \left\{ B^{\prime }(\tilde{\eta }_t)-B^{\prime }(\eta _t) \right\} \frac{\partial \eta _t}{\partial \theta } \frac{\partial \eta _t}{\partial \theta ^T} \right\| \le \left\| \frac{1}{{B^{\prime }(\eta _t)^2}} \frac{\partial X_t(\theta )}{\partial \theta } \frac{\partial X_t(\theta )}{\partial \theta ^T} \right\| \cdot V\rho ^t. \end{aligned}$$

Henceforth, the third term converges to 0 a.s. as \(t \rightarrow \infty \) owing to (A7) and (A10).

(iv) This can be proven similarly to the proof of Proposition 5 of Lee et al. (2016). \(\square \)

Lemma 3

Suppose that conditions (A0)–(A13) hold. Then, under \(H_0\), as \(n\rightarrow \infty \),

$$\begin{aligned} \frac{1}{\sqrt{n}} \max _{1 \le k \le n} \left\| \tilde{S}_k(\hat{\theta }_n) - \left\{ \tilde{S}_k (\theta _0) - \frac{k}{n} \tilde{S}_n(\theta _0) \right\} \right\| = o_P(1), \end{aligned}$$

where \(\tilde{S}_k (\theta ) = \sum _{t=1}^k \partial \tilde{\ell }_t (\theta )/\partial \theta .\)

Proof

As \(\hat{\theta }_n\) is the CMLE of \(\theta _0\), it suffices to show that

$$\begin{aligned} \frac{1}{\sqrt{n}} \max _{1 \le k \le n} \left\| \tilde{S}_k(\hat{\theta }_n) - \tilde{S}_k (\theta _0) - \frac{k}{n} \left\{ \tilde{S}_n(\hat{\theta }_n) - \tilde{S}_n(\theta _0) \right\} \right\| = o_P(1). \end{aligned}$$
(11)

By Taylor’s theorem, we have

$$\begin{aligned} \tilde{S}_k (\hat{\theta }_n) = \tilde{S}_k(\theta _0) + \sum _{t=1}^k \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} (\hat{\theta }_n - \theta _0 ), \end{aligned}$$

where \(\theta _n^*\) is an intermediate point between \(\theta _0\) and \(\hat{\theta }_n\). Thus, we have

$$\begin{aligned}&\frac{1}{\sqrt{n}} \max _{1 \le k \le n} \left\| \tilde{S}_k(\hat{\theta }_n) - \tilde{S}_k (\theta _0) - \frac{k}{n} \left\{ \tilde{S}_n(\hat{\theta }_n) - \tilde{S}_n(\theta _0) \right\} \right\| \\&\quad \le \frac{1}{\sqrt{n}} \max _{1 \le k \le n} \left\| \sum _{t=1}^k \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} (\hat{\theta }_n - \theta _0 ) - \frac{k}{n} \sum _{t=1}^n \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} (\hat{\theta }_n - \theta _0 ) \right\| \\&\quad \le \max _{1 \le k \le n} \frac{k}{n} \left\| \frac{1}{k} \sum _{t=1}^k \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} + I(\theta _0) \right\| \cdot \sqrt{n} \Vert \hat{\theta }_n - \theta _0 \Vert \\&\qquad + \max _{1 \le k \le n} \frac{k}{n} \left\| \frac{1}{n} \sum _{t=1}^n \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T}+ I(\theta _0) \right\| \cdot \sqrt{n} \Vert \hat{\theta }_n - \theta _0 \Vert := I_n + II_n. \end{aligned}$$

Note that, by Proposition 1 and (iv) in Lemma 2,

$$\begin{aligned} II_n\le \left\| \frac{1}{n} \sum _{t=1}^n \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T}+ I(\theta _0) \right\| \cdot \sqrt{n} \Vert \hat{\theta }_n - \theta _0 \Vert = o_p(1)\cdot O_P(1)= o_P(1). \end{aligned}$$

Meanwhile, due to (A7), for some \(0<\gamma <1/2\),

$$\begin{aligned}&\max _{1 \le k \le n^{\gamma }} \frac{k}{n} \left\| \frac{1}{k}\sum _{t=1}^k \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} + I(\theta _0) \right\| \\&\quad \le \frac{n^{\gamma }}{n} \sum _{t=1}^{n^{\gamma }} \left\| \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} \right\| + \frac{n^{\gamma }}{n} \Vert I(\theta _0)\Vert = o_P(1)+o(1)=o_P(1). \end{aligned}$$

Furthermore, since

$$\begin{aligned} \max _{n^{\gamma } < k \le n} \left\| \frac{1}{k}\sum _{t=1}^k \frac{\partial ^2 \tilde{\ell }_t (\theta _n^*)}{\partial \theta \partial \theta ^T} + I(\theta _0) \right\| \rightarrow 0\,\,\,\,a.s. \end{aligned}$$

owing to (iv) in Lemma 2, we can show that \(I_n = o_P(1)\). This asserts (11), and the lemma is validated. \(\square \)

Proof of Theorem 1

Since \(\{\partial \ell _t (\theta _0)/\partial \theta , {\mathcal {F}}_t \}\) forms a sequence of stationary ergodic martingale differences, using a functional central limit theorem, we have

$$\begin{aligned} I(\theta _0)^{-1/2} \frac{1}{\sqrt{n}} S_{[ns]} (\theta _0) {\mathop {\longrightarrow }\limits ^{w}} {\mathbf B}_{d} (s), \end{aligned}$$

where \(S_k (\theta ) = \sum _{t=1}^k {\partial \ell _t (\theta )}/{\partial \theta }\) and \(\{\mathbf B_d (s), 0<s<1\}\) is a d-dimensional standard Brownian motion. Further, from (ii) in Lemma 2, we have

$$\begin{aligned} I(\theta _0)^{-1/2} \frac{1}{\sqrt{n}} \tilde{S}_{[ns]} (\theta _0) {\mathop {\longrightarrow }\limits ^{w}} {\mathbf B}_{d} (s). \end{aligned}$$

Then, using Lemma 3, we obtain

$$\begin{aligned} \hat{I}_n^{-1/2} \frac{1}{\sqrt{n}} \tilde{S}_{[ns]} (\hat{\theta }_n) {\mathop {\longrightarrow }\limits ^{w}} {\mathbf B}_{d}^{\circ } (s). \end{aligned}$$

This establishes the theorem. \(\square \)

Proof of Theorem 2

We consider \(T_n^{\mathrm{res},2}\) only. (The proof of \(T_n^{\mathrm{res},1} {\mathop {\longrightarrow }\limits ^{w}} \sup _{0\le s \le 1} | \mathbf {B}_1^{\circ } (s) |\) is similar to that of Kang and Lee (2014).)

We write

$$\begin{aligned} \hat{\epsilon }_{t,2} - \epsilon _{t,2}= & {} \frac{Y_t - \hat{X}_t}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{Y_t - X_t(\theta _0)}{\sqrt{B^{\prime }(\eta _t^0)}} \\= & {} (X_t(\theta _0)-\hat{X}_t) \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^0)}} \right) \\&+ \,\epsilon _{t,1}\left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t ^0)}} \right) + \frac{1}{\sqrt{B^{\prime }(\eta _t^0)}}(X_t(\theta _0) - \hat{X}_t))\\:= & {} R_{t,1} + R_{t,2}+R_{t,3}. \end{aligned}$$

Noting (3), it suffices to show that

$$\begin{aligned} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k (\hat{\epsilon }_{t,2} - \epsilon _{t,2} ) - \frac{k}{n} \sum _{t=1}^n (\hat{\epsilon }_{t,2} - \epsilon _{t,2}) \right| = o_P(1), \end{aligned}$$
(12)

i.e., for \(i=1,2,3\),

$$\begin{aligned} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k R_{t,i} - \frac{k}{n} \sum _{t=1}^nR_{t,i} \right| = o_P(1). \end{aligned}$$
(13)

Firstly, we express

$$\begin{aligned} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k R_{t,1} - \frac{k}{n} \sum _{t=1}^n R_{t,1} \right| \le \frac{2}{\sqrt{n}} \sum _{t=1}^n | R_{t,1} | \le I_{n,1} + I_{n,2}+I_{n,3}, \end{aligned}$$

where

$$\begin{aligned}&I_{n,1} = \frac{2}{\sqrt{n}} \sum _{t=1}^n \left| \left( X_t(\theta _0)-X_t(\hat{\theta }_n)\right) \left( \frac{1}{\sqrt{B^{\prime }(\eta _t^0)}} - \frac{1}{\sqrt{B^{\prime }( \eta _t^n)}} \right) \right| ,\\&I_{n,2} = \frac{2}{\sqrt{n}} \sum _{t=1}^n \left| \left( X_t(\theta _0)-X_t(\hat{\theta }_n)\right) \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }( \eta _t^n)}} \right) \right| ,\\&I_{n,3} = \frac{2}{\sqrt{n}} \sum _{t=1}^n \left| \left( X_t(\hat{\theta }_n)-\hat{X}_t\right) \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }( \eta _t^0)}} \right) \right| . \end{aligned}$$

Using the mean value theorem with intermediate points \(\theta _{n,1}^*\) and \(\theta _{n,2}^*\) between \(\hat{\theta }_n\) and \(\theta _0\), we have

$$\begin{aligned} I_{n,1}= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^n \left| (\hat{\theta }_n - \theta _0)^T \frac{\partial X_t (\theta _{n,1}^*)}{\partial \theta }\cdot \frac{B^{\prime \prime }(\eta _t(\theta _{n,2}^*))}{B^{\prime }(\eta _t(\theta _{n,2}^*))^{3/2}} \frac{1}{B^{\prime }(\eta _t(\theta _{n,2}^*))} (\hat{\theta }_n - \theta _0)^T \frac{\partial X_t (\theta _{n,2}^*)}{\partial \theta } \right| \\\le & {} n \Vert \hat{\theta }_n - \theta _0 \Vert ^2 \frac{1}{\underline{c}} \frac{1}{n\sqrt{n}} \sum _{t=1}^n \left| \sup _{\theta \in \Theta }\frac{B^{\prime \prime }(\eta _t)}{B^{\prime }(\eta _t)^{3/2}}\right| \cdot \left\| \sup _{\theta \in \Theta } \frac{\partial X_t (\theta )}{\partial \theta }\right\| ^2=O_p(1) \cdot o_P(1) =o_P(1), \end{aligned}$$

where we have used Proposition 1 and (A7), (A10), and (A12). Since \(\hat{\eta }_t\) can be represented as \(\tilde{\eta }_t(\hat{\theta }_n)=B^{-1}(\tilde{X}_t(\hat{\theta }_n))\) with \(\tilde{X}_1 (\hat{\theta }_n)=\hat{X}_1\), we have

$$\begin{aligned} I_{n,2}\le & {} \frac{1}{\sqrt{n}} \frac{1}{\underline{c}^{3/2}}\sum _{t=1}^n \left| \left( X_t(\theta _0)-X_t(\hat{\theta }_n)\right) \left( B'(\eta _t^n) - B'(\hat{\eta }_t) \right) \right| \\\le & {} \sqrt{n} \Vert \hat{\theta }_n - \theta _0 \Vert \frac{V}{n\underline{c}^{3/2}} \sum _{t=1}^n \rho ^t \left\| \frac{\partial X_t (\theta _{n,1}^*)}{\partial \theta } \right\| =O_p(1) \cdot o_P(1) =o_P(1) \end{aligned}$$

with intermediate point \(\theta _{n,1}^*\) between \(\hat{\theta }_n\) and \(\theta _0\), due to (A7), (A10), and (A11). Furthermore, note that \(|\hat{X}_t - X_t (\hat{\theta }_n)| \le V\rho ^t\) a.s. since owing to (A0),

$$\begin{aligned} |\hat{X}_t - X_t (\hat{\theta }_n)|= & {} \left| f_{\hat{\theta }_n}(\hat{X}_{t-1}, Y_{t-1}) -f_{\hat{\theta }_n}( X_{t-1}(\hat{\theta }_n), Y_{t-1}) \right| \\\le & {} \omega _1|\hat{X}_{t-1} - X_{t-1} (\hat{\theta }_n)| \le \omega _1^{t-1} |\hat{X}_1 - X_1 (\hat{\theta }_n)|. \end{aligned}$$

Then, by using this and (A10),

$$\begin{aligned} I_{n,3}\le & {} \frac{2}{\sqrt{n}} \sum _{t=1}^n V\rho ^t \left\| \sup _{\theta \in \Theta } \frac{2}{\sqrt{B^{\prime }(\eta _t)}}\right\| \le \frac{4V}{\sqrt{\underline{c}}\sqrt{n}} \sum _{t=1}^n \rho ^t =o_P(1). \end{aligned}$$

Thus, (13) holds for \(i=1\).

Secondly, we express

$$\begin{aligned} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k R_{t,2} - \frac{k}{n} \sum _{t=1}^n R_{t,2} \right| \le \frac{2}{\sqrt{n}} \sum _{t=1}^n | R_{t,2} | \le II_{n,1} + II_{n,2}, \end{aligned}$$

where

$$\begin{aligned} II_{n,1}= & {} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k \epsilon _{t,1} \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^n)}} \right) \right. \\&\left. - \frac{k}{n} \sum _{t=1}^n \epsilon _{t,1} \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^n)}} \right) \right| ,\\ II_{n,2}= & {} \max _{1 \le k \le n} \frac{1}{\sqrt{n}} \left| \sum _{t=1}^k \epsilon _{t,1} \left( \frac{1}{\sqrt{B^{\prime }(\eta _t^n)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^0)}} \right) \right. \\&\left. - \frac{k}{n} \sum _{t=1}^n \epsilon _{t,1} \left( \frac{1}{\sqrt{B^{\prime }(\eta _t^n)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^0)}} \right) \right| . \end{aligned}$$

Similarly to the case of \(I_{n,2}\), we have

$$\begin{aligned} II_{n,1}\le & {} \frac{2}{\sqrt{n}} \sum _{t=1}^n \left| \epsilon _{t,1} \left( \frac{1}{\sqrt{B^{\prime }(\hat{\eta }_t)}} - \frac{1}{\sqrt{B^{\prime }(\eta _t^n)}} \right) \right| \\\le & {} \frac{1}{\sqrt{n}} \frac{1}{\underline{c}^{3/2}} \sum _{t=1}^n \left| \epsilon _{t,1} (B'(\hat{\eta }_t) - B'(\eta _t^n)) \right| \le \frac{V}{\sqrt{n}} \frac{1}{\underline{c}^{3/2}} \sum _{t=1}^n | \epsilon _{t,1}|\rho ^t = o_P(1). \end{aligned}$$

Using Taylor’s theorem, we have

$$\begin{aligned} B^{\prime }(\eta _t^n)^{-1/2} = B^{\prime }(\eta _t^0)^{-1/2} - \frac{1}{2} Z_t(\theta _0)(\hat{\theta }_n - \theta _0)^T \frac{\partial \eta _t^0}{\partial \theta } -\frac{1}{2} (\hat{\theta }_n - \theta _0)^T \left( \zeta _t(\theta _n^*) - \zeta _t(\theta _0) \right) , \end{aligned}$$

where \(\theta _n^*\) is an intermediate point between \(\hat{\theta }_n\) and \(\theta _0\), and \(\zeta _t(\theta )=B''(\eta _t)B'(\eta _t)^{-3/2} \frac{\partial \eta _t}{\partial \theta } \), so that

$$\begin{aligned} II_{n,2}\le & {} II_{n,2}^{\prime } + II_{n,2}^{\prime \prime }, \end{aligned}$$

where

$$\begin{aligned} II_{n,2}^{\prime }= & {} \sqrt{n} \Vert \hat{\theta }_n - \theta _0\Vert \max _{1 \le k \le n} \frac{k}{n} \left| \frac{1}{k} \sum _{t=1}^k \epsilon _{t,1} \zeta _t(\theta _0) - \frac{1}{n}\sum _{t=1}^n \epsilon _{t,1} \zeta _t(\theta _0) \right| ,\\ II_{n,2}^{\prime \prime }= & {} \sqrt{n} \Vert \hat{\theta }_n - \theta _0\Vert \frac{2}{n}\sum _{t=1}^n |\epsilon _{t,1}|\left\| \zeta _t(\theta _n^*) - \zeta _t(\theta _0) \right\| . \end{aligned}$$

Since \(\{\epsilon _{t,1} \zeta _t(\theta _0)\}\) is ergodic, \(\sqrt{n} \Vert \hat{\theta }_n - \theta _0\Vert = O_P(1)\), and \(E|\epsilon _{t,1}| \Vert \zeta _t(\theta _0)\Vert < \infty \) owing to (A6), (A7), (A10), and (A12), we have \(II_{n,2}^{\prime }=o_P(1)\). Moreover, because

$$\begin{aligned} II_{n,2}^{\prime \prime } \le \sqrt{n} \Vert \hat{\theta }_n - \theta _0\Vert \frac{2}{n}\sum _{t=1}^n |\epsilon _{t,1}| \sup _{\Vert \theta -\theta _0\Vert \le \Vert \hat{\theta }_n - \theta _0\Vert } \left\| \zeta _t(\theta ) - \zeta _t(\theta _0) \right\| \end{aligned}$$

and \(E \sup _{\theta \in \Theta } \Vert \zeta _t(\theta )\Vert ^2 < \infty \) owing to (A7), (A10), and (A12), using (A3), (A6), and the dominated convergence theorem, we can have \(II_{n,2}^{\prime \prime }=o_P(1)\) (cf., Proposition 5 in Lee et al. (2016)). Thus, (13) holds for \(i=2\).

Finally, using Taylor’s theorem, we have

$$\begin{aligned} X_t (\hat{\theta }_n) = X_t(\theta _0) + (\hat{\theta }_n - \theta _0)^T \frac{\partial X_t(\theta _0)}{\partial \theta } + (\hat{\theta }_n - \theta _0)^T \left( \frac{\partial X_t(\theta _n^*)}{\partial \theta } - \frac{\partial X_t(\theta _0)}{\partial \theta } \right) \end{aligned}$$

for some \(\theta _n^*\) between \(\hat{\theta }_n\) and \(\theta _0\). Then, similarly to the case of \(II_{n,2}\), we can show that (13) holds for \(i=3\). Hence, (12) is verified. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Lee, S. CUSUM test for general nonlinear integer-valued GARCH models: comparison study. Ann Inst Stat Math 71, 1033–1057 (2019). https://doi.org/10.1007/s10463-018-0676-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0676-7

Keywords

Navigation