Skip to main content
Log in

Weighted allocations, their concomitant-based estimators, and asymptotics

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Various members of the class of weighted insurance premiums and risk capital allocation rules have been researched from a number of perspectives. Corresponding formulas in the case of parametric families of distributions have been derived, and they have played a pivotal role when establishing parametric statistical inference in the area. Nonparametric inference results have also been derived in special cases such as the tail conditional expectation, distortion risk measure, and several members of the class of weighted premiums. For weighted allocation rules, however, nonparametric inference results have not yet been adequately developed. In the present paper, therefore, we put forward empirical estimators for the weighted allocation rules and establish their consistency and asymptotic normality under practically sound conditions. Intricate statistical considerations rely on the theory of induced order statistics, known as concomitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asimit, A. V., Vernic, R., Zitikis, R. (2013). Evaluating risk measures and capital allocations based on multi-losses driven by a heavy-tailed background risk: The multivariate Pareto-II model. Risks, 1, 14–33.

  • Asimit, A. V., Furman, E., Vernic, R. (2016). Statistical inference for a new class of multivariate Pareto distributions. Communications in Statistics: Simulation and Computation, 45, 456–471.

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J. L. (2004). Statistics of extremes: Theory and applications. Chichester: Wiley.

  • Bhattacharya, P. K. (1974). Convergence of sample paths of normalized sum of induced order statistics. Annals of Statistics, 2, 1034–1039.

    Article  MathSciNet  MATH  Google Scholar 

  • Brahimi, B., Meddi, F., Necir, A. (2012). Bias-corrected estimation in distortion risk premiums for heavy-tailed losses. Afrika Statistika, 7, 474–490.

  • Brahimi, B., Meraghni, D., Necir, A., Zitikis, R. (2011). Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses. Insurance: Mathematics and Economics, 49, 325–334.

  • Brazauskas, V. (2009). Robust and efficient fitting of loss models: diagnostic tools and insights. North American Actuarial Journal, 13, 356–369.

    Article  MathSciNet  Google Scholar 

  • Brazauskas, V., Kleefeld, A. (2009). Robust and efficient fitting of the generalized Pareto distribution with actuarial applications in view. Insurance: Mathematics and Economics, 45, 424–435.

  • Brazauskas, V., Kleefeld, A. (2016). Modeling severity and measuring tail risk of Norwegian fire claims. North American Actuarial Journal, 20, 1–16.

  • Brazauskas, V., Jones, B. L., Puri, M. L., Zitikis, R. (2008). Estimating conditional tail expectation with actuarial applications in view. Journal of Statistical Planning and Inference, 138(11), 3590–3604 (special issue in Honor of Junjiro Ogawa: Design of experiments, multivariate analysis and statistical inference).

  • Brazauskas, V., Serfling, R. (2003). Favourable estimators for fitting Pareto models: A study using goodness-of-fit measures with actual data. ASTIN Bulletin, 33, 365–381.

  • Castillo, E., Hadi, A. S., Balakrishnan, N., Sarabia, J. M. (2005). Extreme value and related models with applications in engineering and science. Hoboken: Wiley.

  • Chernoff, H., Gastwirth, J. L., Johns, M. V. (1967). Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Annals of Mathematical Statistics, 38, 52–72.

  • de Haan, L., Ferreira, A. (2006). Extreme value theory: An introduction. New York: Springer.

  • Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling extremal events: For insurance and finance. New York: Springer.

  • Föllmer, H., Schied, A. (2016). Stochastic finance: An introduction in discrete time (4th ed.). Berlin: Walter de Gruyter.

  • Furman, E., Landsman, Z. (2005). Risk capital decomposition for a multivariate dependent gamma portfolio. Insurance: Mathematics and Economics, 37, 635–649.

  • Furman, E., Landsman, Z. (2010). Multivariate Tweedie distributions and some related capital-at-risk analyses. Insurance: Mathematics and Economics, 46, 351–361.

  • Furman, E., Zitikis, R. (2008a). Weighted premium calculation principles. Insurance: Mathematics and Economics, 42, 459–465.

  • Furman, E., Zitikis, R. (2008b). Weighted risk capital allocations. Insurance: Mathematics and Economics, 43, 263–269.

  • Furman, E., Zitikis, R. (2017). Beyond the Pearson correlation: Heavy-tailed risks, weighted Gini correlations, and a Gini-type weighted insurance pricing model. ASTIN Bulletin, 47, 919–942.

  • Gonzalez, R., Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38, 129–166.

  • Greselin, F., Zitikis, R. (2018). From the classical Gini index of income inequality to a new Zenga-type relative measure of risk: A modeller’s perspective. Econometrics, 6, 1–20 (special issue on econometrics and income inequality, with Guest Editors Martin Biewen and Emmanuel Flachaire).

  • Gribkova, N. V. (2017). Cramér type large deviations for trimmed $L$-statistics. Probability and Mathematical Statistics, 37, 101–118.

    MathSciNet  MATH  Google Scholar 

  • Gribkova, N. V., Zitikis, R. (2017). Statistical foundations for assessing the difference between the classical and weighted-Gini betas. Mathematical Methods of Statistics, 26, 267–281.

  • Helmers, R. (1982). Edgeworth expansions for linear combinations of order statistics. Amsterdam: Mathematisch Centrum.

    MATH  Google Scholar 

  • Jones, B. L., Zitikis, R. (2003). Empirical estimation of risk measures and related quantities. North American Actuarial Journal, 7, 44–54.

  • Jones, B. L., Zitikis, R. (2007). Risk measures, distortion parameters, and their empirical estimation. Insurance: Mathematics and Economics, 41, 279–297.

  • Kamnitui, N., Santiwipanont, T., Sumetkijakan, S. (2015). Dependence measuring from conditional variances. Dependence Modeling, 3, 98–112.

  • Maesono, Y. (2005). Asymptotic representation of ratio statistics and their mean squared errors. Journal of the Japan Statistical Society, 35, 73–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Maesono, Y. (2010). Edgeworth expansion and normalizing transformation of ratio statistics and their application. Communications in Statistics: Theory and Methods, 39, 1344–1358.

    Article  MathSciNet  MATH  Google Scholar 

  • Maesono, Y., Penev, S. (2013). Improved confidence intervals for quantiles. Annals of the Institute of Statistical Mathematics, 65, 167–189.

  • McNeil, A. J., Frey, R., Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools (Revised ed.). Princeton, NJ: Princeton University Press.

  • Necir, A., Meraghni, D. (2009). Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts. Insurance: Mathematics and Economics, 45, 49–58.

  • Necir, A., Meraghni, D., Meddi, F. (2007). Statistical estimate of the proportional hazard premium of loss. Scandinavian Actuarial Journal, 2007, 147–161.

  • Necir, A., Rassoul, A., Zitikis, R. (2010). Estimating the conditional tail expectation in the case of heady-tailed losses. Journal of Probability and Statistics, 2010, 1–17.

  • Nešlehová, J., Embrechts, P., Chavez-Demoulin, V. (2006). Infinite-mean models and the LDA for operational risk. Journal of Operational Risk, 1, 3–25.

  • Pflug, G. C., Römisch, W. (2007). Modeling, measuring and managing risk. Singapore: World Scientific.

  • Quiggin, J. (1993). Generalized expected utility theory. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Rao, C. R., Zhao, L. C. (1995). Convergence theorems for empirical cumulative quantile regression function. Mathematical Methods of Statistics, 4, 81–91.

  • Rassoul, A. (2013). Kernel-type estimator of the conditional tail expectation for a heavy-tailed distribution. Insurance: Mathematics and Economics, 53, 698–703.

    MathSciNet  MATH  Google Scholar 

  • Ratovomirija, G., Tamraz, M., Vernic, R. (2017). On some multivariate Sarmanov mixed Erlang reinsurance risks: Aggregation and capital allocation. Insurance: Mathematics and Economics, 74, 197–209.

  • Rüschendorf, L. (2013). Mathematical risk analysis: Dependence, risk bounds, optimal allocations and portfolios. New York: Springer.

    Book  MATH  Google Scholar 

  • Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Shorack, G. R. (1972). Functions of order statistics. Annals of Mathematical Statistics, 43, 412–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Shorack, G. R. (2017). Probability for statisticians (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions. Annals of Statistics, 2, 676–693.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, J. (2016). Multiple risk factors dependence structures with applications to actuarial risk management. Ph.D. thesis, York University, Ontario, Canada.

  • Su, J., Furman, E. (2017). A form of multivariate Pareto distribution with applications to financial risk measurement. ASTIN Bulletin, 47, 331–357.

  • Tse, S. M. (2009). On the cumulative quantile regression process. Mathematical Methods of Statistics, 18, 270–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Tse, S. M. (2015). The cumulative quantile regression function with censored and truncated response. Mathematical Methods of Statistics, 24, 147–155.

    Article  MathSciNet  MATH  Google Scholar 

  • Tversky, A., Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.

  • van Zwet, W. R. (1980). A strong law for linear functions of order statistics. Annals of Probability, 8, 986–990.

    Article  MathSciNet  MATH  Google Scholar 

  • Vernic, R. (2017). Capital allocation for Sarmanov’s class of distributions. Methodology and Computing in Applied Probability, 19, 311–330.

    Article  MathSciNet  MATH  Google Scholar 

  • von Neumann, J., Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.

  • Wakker, P. P. (2010). Prospect theory: For risk and ambiguity. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics, 17, 43–54.

    MathSciNet  MATH  Google Scholar 

  • Wang, S. S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bulletin, 26, 71–92.

    Article  Google Scholar 

  • Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, S. S. (1981). Linear combinations of concomitants of order statistics with application to testing and estimation. Annals of the Institute of Statistical Mathematics, 33, 463–470.

    Article  MathSciNet  MATH  Google Scholar 

  • Zitikis, R., Gastwirth, J. L. (2002). Asymptotic distribution of the S-Gini index. Australian and New Zealand Journal of Statistics, 44, 439–446.

Download references

Acknowledgements

We are indebted to two anonymous reviewers for suggestions, insightful comments, and constructive criticism that guided our work on the revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ričardas Zitikis.

Additional information

Research supported by the Natural Sciences and Engineering Research Council of Canada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribkova, N., Zitikis, R. Weighted allocations, their concomitant-based estimators, and asymptotics. Ann Inst Stat Math 71, 811–835 (2019). https://doi.org/10.1007/s10463-018-0660-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0660-2

Keywords

Navigation