Skip to main content
Log in

Frequentist model averaging for threshold models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper develops a frequentist model averaging approach for threshold model specifications. The resulting estimator is proved to be asymptotically optimal in the sense of achieving the lowest possible squared errors. In particular, when combining estimators from threshold autoregressive models, this approach is also proved to be asymptotically optimal. Simulation results show that for the situation where the existing model averaging approach is not applicable, our proposed model averaging approach has a good performance; for the other situations, our proposed model averaging approach performs marginally better than other commonly used model selection and model averaging methods. An empirical application of our approach on the US unemployment data is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Although Hansen (2008, 2009) studied averaging estimators in time series models, they did not develop the asymptotic optimality.

References

  • Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics, 53, 603–618.

  • Caner, M., Hansen, B. E. (2001). Threshold autoregression with a unit root. Econometrica, 69, 1555–1596.

  • Chan, K. S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The Annals of Statistics, 21, 520–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, T. C. F., Ing, C. K., Yu, S. H. (2014). Inverse moment bounds for sample autocovariance matrices based on detrended time series and their applications. Linear Algebra & Its Applications, 473, 180–201.

  • Cheng, T. C. F., Ing, C. K., Yu, S. H. (2015). Toward optimal model averaging in regression models with time series errors. Journal of Econometrics, 189, 321–334.

  • Craven, P., Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31, 377–403.

  • Cuaresma, J. C., Doppelhofer, G. (2007). Nonlinearities in cross-country growth regressions: A Bayesian averaging of thresholds (BAT) approach. Journal of Macroeconomics, 29, 541–554.

  • Delgado, M. A., Hidalgo, J. (2000). Nonparametric inference on structural breaks. Journal of Econometrics, 96, 113–144.

  • Hansen, B. E. (2000). Sample splitting and threshold estimation. Econometrica, 68, 575–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75, 1175–1189.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, B. E. (2008). Least-squares forecast averaging. Journal of Econometrics, 146, 342–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, B. E. (2009). Averaging estimators for regressions with a possible structural break. Econometric Theory, 25, 1498–1514.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, B. E., Racine, J. S. (2012). Jackknife model averaging. Journal of Econometrics, 167, 38–46.

  • Hjort, N. L., Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association, 98, 879–899.

  • Kapetanios, G. (2001). Model selection in threshold models. Journal of Time Series Analysis, 22, 733–754.

    Article  MathSciNet  MATH  Google Scholar 

  • Koo, B., Seo, M. H. (2015). Structural-break models under mis-specification: Implications for forecasting. Social Science Electronic Publishing, 188, 166–181.

  • Li, K. C. (1987). Asymptotic optimality for \(C_p\), \(C_l\), cross-validation and generalized cross-validation: Discrete index set. The Annals of Statistics, 15, 958–975.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, H., Zou, G., Wan, A. T. K., Zhang, X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 106, 1053–1066.

  • Liu, Q., Okui, R. (2013). Heteroskedasticity-robust \(C_{p}\) model averaging. Econometrics Journal, 16, 463–472.

  • Shen, X., Huang, H. C. (2006). Optimal model assessment, selection and combination. Journal of the American Statistical Association, 101, 554–568.

  • Tong, H. (1983). Threshold models in nonlinear time series analysis: Lecture notes in statistics (Vol. 21). Berlin: Springer.

    Book  Google Scholar 

  • Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Tong, H., Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society-Series B, 42, 245–292.

  • Wan, A. T. K., Zhang, X., Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal of Econometrics, 156, 277–283.

  • White, H. (1984). Asymptotic theory for econometricians. Orlando, Florida: Academic Press.

    Google Scholar 

  • Xu, G., Wang, S., Huang, J. (2013). Focused information criterion and model averaging based on weighted composite quantile regression. Scandinavian Journal of Statistics, 41, 365–381.

  • Yang, Y. (2001). Adaptive regression by mixing. Journal of the American Statistical Association, 96, 574–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Y. (2004). Combining forecasting procedures: Some theoretical resutls. Econometric Theory, 20, 176–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, X., Wan, A. T. K., Zou, G. (2013). Model averaging by jackknife criterion in models with dependent data. Journal of Econometrics, 174, 82–94.

Download references

Acknowledgements

We thank the editor and the two anonymous referees for their constructive comments. Zhang’s work was partially supported by the National Natural Science Foundation of China (Grant Nos. 71522004, 11471324, 71463012 and 71631008) and a grant from the Ministry of Education of China (Grant No. 17YJC910011). Zou’s work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11529101 and 11331011) and a Grant from the Ministry of Science and Technology of China (Grant No. 2016YFB0502301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Zhang.

Appendix

Appendix

Lemma 1

Let \({\mathcal {W}}\) be a weight vector set which can be related to the sample size n. Define

$$\begin{aligned} w^{*}=\underset{w\in {{\mathcal {W}}}}{\text {argmin}}\left( L_n(w)+a_n(w) \right) . \end{aligned}$$
(17)

If

$$\begin{aligned}&\underset{w\in {{\mathcal {W}}}}{\sup }\frac{|a_n(w)|}{R_n(w)}\overset{p}{ \longrightarrow }0, \end{aligned}$$
(18)
$$\begin{aligned}&\underset{w\in {{\mathcal {W}}}}{\sup }\left| \frac{L_n(w)}{R_n(w)}-1\right| \overset{p}{\longrightarrow }0, \end{aligned}$$
(19)

and there exists a constant \(\kappa _3\) such that

$$\begin{aligned} \inf \limits _{w\in {{\mathcal {W}}}}R_n(w) \ge \kappa _3 >0, \end{aligned}$$
(20)

then

$$\begin{aligned} \frac{L_n(w^*)}{\mathrm {inf}_{w\in {{\mathcal {W}}}}L_n(w)}\overset{p}{ \longrightarrow }1. \end{aligned}$$
(21)

Proof

From the definition of the infimum, there exist a non-negative series \(\vartheta _{n}\) and a vector \(w(n)\in {{\mathcal {W}}}\) such that \(\vartheta _{n}\rightarrow 0\) and

$$\begin{aligned} \inf \limits _{w\in {{\mathcal {W}}}}L_{n}(w)=L_{n}(w(n))-\vartheta _{n}. \end{aligned}$$
(22)

In addition, it follows from (19) that

$$\begin{aligned} \inf \limits _{w\in {{\mathcal {W}}}}\frac{L_{n}(w)}{R_{n}(w)}= & {} \inf \limits _{w \in {{\mathcal {W}}}}\left( \frac{L_{n}(w)}{R_{n}(w)}-1\right) +1 \nonumber \\\ge & {} -\sup \limits _{w\in {{\mathcal {W}}}}\left| \frac{L_{n}(w)}{R_{n}(w)} -1\right| +1\overset{p}{\longrightarrow }1. \end{aligned}$$
(23)

From (20), (23) and \( \vartheta _{n}\rightarrow 0\), we have

$$\begin{aligned} \inf \limits _{w\in {{\mathcal {W}}}}\frac{\left| L_{n}(w)-\vartheta _{n}\right| }{R_{n}(w)}\ge & {} \inf \limits _{w\in {{\mathcal {W}}}}\frac{ L_{n}(w)-\vartheta _{n}}{R_{n}(w)}\ge \inf \limits _{w\in {{\mathcal {W}}}}\frac{ L_{n}(w)}{R_{n}(w)}-\frac{\vartheta _{n}}{\mathrm {inf}_{w\in {{\mathcal {W}}} }R_{n}(w)} \nonumber \\\ge & {} -\sup \limits _{w\in {{\mathcal {W}}}}\left| \frac{L_{n}(w)}{R_{n}(w)} -1\right| +1-\frac{\vartheta _{n}}{\mathrm {inf}_{w\in {{\mathcal {W}}} }R_{n}(w)} \nonumber \\&\overset{p}{\longrightarrow }1. \end{aligned}$$
(24)

Now, by the definition of \(w^{*}\), (18), (20), (22)–(24), and \(\vartheta _{n}\rightarrow 0\), we have, for any \( \delta >0\),

$$\begin{aligned}&\Pr \left\{ \left| \frac{\inf _{w\in {{{\mathcal {W}}}}}L_{n}(w)}{ L_{n}(w^{*})}-1\right|>\delta \right\} =\Pr \left\{ \frac{ L_{n}(w^{*})-\inf _{w\in {{{\mathcal {W}}}}}L_{n}(w)}{L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad =\Pr \left\{ \frac{\inf _{w\in {{\mathcal {W}}}}\left( L_{n}(w)+a_{n}(w)\right) -a_{n}(w^{*})-\inf _{w\in {{{\mathcal {W}}}} }L_{n}(w)}{L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad \le \Pr \left\{ \frac{L_{n}(w(n))+a_{n}(w(n))-a_{n}(w^{*})-L_{n}(w(n))+\vartheta _{n}}{L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad \le \Pr \left\{ \frac{|a_{n}(w(n))|}{L_{n}(w^{*})}+\frac{ |a_{n}(w^{*})|}{L_{n}(w^{*})}+\frac{\vartheta _{n}}{L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad \le \Pr \left\{ \frac{|a_{n}(w(n))|}{\inf _{w\in {{\mathcal {W}}}}L_{n}(w)}+ \frac{|a_{n}(w^{*})|}{L_{n}(w^{*})}+\frac{\vartheta _{n}}{ L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad =\Pr \left\{ \frac{|a_{n}(w(n))|}{L_{n}(w(n))-\vartheta _{n}}+\frac{ |a_{n}(w^{*})|}{L_{n}(w^{*})}+\frac{\vartheta _{n}}{L_{n}(w^{*})}>\delta \right\} \nonumber \\&\quad \le \Pr \left\{ \sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{ L_{n}(w)-\vartheta _{n}}+\sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{L_{n}(w)} +\sup _{w\in {{\mathcal {W}}}}\frac{\vartheta _{n}}{L_{n}(w)}>\delta \right\} \nonumber \\&\quad \le \Pr \left\{ \sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{R_{n}(w)} \sup _{w\in {{\mathcal {W}}}}\frac{R_{n}(w)}{\left| L_{n}(w)-\vartheta _{n}\right| }+\sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{R_{n}(w)} \sup _{w\in {{\mathcal {W}}}}\frac{R_{n}(w)}{L_{n}(w)}\right. \nonumber \\&\qquad \left. +\sup _{w\in {{\mathcal {W}}}}\frac{\vartheta _{n}}{R_{n}(w)} \sup _{w\in {{\mathcal {W}}}}\frac{R_{n}(w)}{L_{n}(w)}>\delta \right\} \nonumber \\&\quad =\Pr \left\{ \sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{R_{n}(w)}\left[ \inf _{w\in {{\mathcal {W}}}}\frac{\left| L_{n}(w)-\vartheta _{n}\right| }{R_{n}(w)}\right] ^{-1}+\sup _{w\in {{\mathcal {W}}}}\frac{|a_{n}(w)|}{R_{n}(w)} \left[ \inf _{w\in {{\mathcal {W}}}}\frac{L_{n}(w)}{R_{n}(w)}\right] ^{-1}\right. \nonumber \\&\qquad \left. +\frac{\vartheta _{n}}{\inf _{w\in {{\mathcal {W}}}}R_{n}(w)} \left[ \inf _{w\in {{\mathcal {W}}}}\frac{L_{n}(w)}{R_{n}(w)}\right] ^{-1}>\delta \right\} \nonumber \\&\quad \rightarrow 0. \end{aligned}$$
(25)

Therefore, \(\mathrm {inf}_{w\in {{\mathcal {W}}}}L_{n}(w)/L_{n}(w^{*}) \overset{p}{\longrightarrow }1\), which implies (21). \(\square \)

Proof of Theorem 1

First, from the fact that \(X_{(m)}(\gamma )\) is of full column rank, we have \(tr\hat{P}(w)=trP^{*}(w)\le 2\sum _{m=1}^{M}w_{m}k_{m}\). Let \(\hat{A} (w)=I_{n}-\hat{P}(w)\), so that

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_{n}(w)=&\, \Vert Y-\hat{\mu }(w)\Vert ^{2}\Big (1+2\frac{tr\hat{P}(w) }{n}\Big ) \\ =&\, L_{n}(w)+\Vert e\Vert ^{2}+2\mu ^{\prime }(\hat{A}(w)-A^{*}(w))e+2\mu ^{\prime }A^{*}(w)e \\&+\,2\big (\sigma ^{2}trP^{*}(w)-e^{\prime }P^{*}(w)e\big )+2e^{\prime } \big (P^{*}(w)-\hat{P}(w)\big )e \\&+\,2trP^{*}(w)\big (\Vert A^{*}(w)Y\Vert ^{2}/n-\sigma ^{2}\big ) \\&+\,2trP^{*}(w)\big (\Vert \hat{A}(w)Y\Vert ^{2}-\Vert A^{*}(w)Y\Vert ^{2}\big )/n. \end{aligned} \end{aligned}$$

Since \(\Vert e\Vert ^{2}\) is unrelated to w and Condition (20) with \({\mathcal {W}}={\mathcal {H}}_{n}\) is implied by Condition (7), according to Lemma 1, Theorem 1 is valid if

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|\mu ^{\prime }A^{*}(w)e|/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(26)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|e^{\prime }P^{*}(w)e-\sigma ^{2}trP^{*}(w)|/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(27)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|L_{n}^{*}(w)/R_{n}^{*}(w)-1| \overset{p}{\longrightarrow }0, \end{aligned}$$
(28)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|trP^{*}(w)(\Vert A^{*}(w)Y\Vert ^{2}/n-\sigma ^{2})|/R_{n}^{*}(w)\overset{p}{\longrightarrow } 0, \end{aligned}$$
(29)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }\big (P^{*}(w)- \hat{P}(w)\big )e\big |/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(30)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |e^{\prime }\big (P^{*}(w)-\hat{ P}(w)\big )e\big |/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(31)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|L_{n}(w)-L_{n}^{*}(w)|/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(32)

and

$$\begin{aligned} \underset{w\in {\mathcal {H}}_{n}}{\sup }\big |trP^{*}(w)\big (\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}\big )\big |/nR_{n}^{*}(w) \overset{p}{\longrightarrow }0. \end{aligned}$$
(33)

(26)–(28) can been shown by following the proof of Theorem \(\text {1}^{\prime }\) of Wan et al. (2010). Therefore, we only need to verify (29)–(33). First, we prove (29). Note that

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }|trP^{*}(w)\big (\Vert A^{*}(w)Y\Vert ^{2}/n-\sigma ^{2}\big )|/R_{n}^{*}(w) \\&=\underset{w\in {\mathcal {H}}_{n}}{\sup }\left\{ \frac{trP^{*}(w)}{ nR_{n}^{*}(w)}\big |\Vert \mu -P^{*}(w)Y\Vert ^{2}+\Vert e\Vert ^{2}+2\mu ^{\prime }A^{*}(w)e-2e^{\prime }P^{*}(w)e-n\sigma ^{2}\big | \right\} \\&\le \underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{L_{n}^{*}(w)}{ R_{n}^{*}(w)}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{trP^{*}(w)}{ n}+\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{2|\mu ^{\prime }A^{*}(w)e| }{R_{n}^{*}(w)}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{trP^{*}(w) }{n} \\&\qquad +\frac{|\Vert e\Vert ^{2}-n\sigma ^{2}|}{\sqrt{n}}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{1}{R_{n}^{*}(w)}\underset{w\in {\mathcal {H}} _{n}}{\sup }\frac{trP^{*}(w)}{\sqrt{n}} \\&\qquad +\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{2|e^{\prime }P^{*}(w)e-\sigma ^{2}trP^{*}(w)|}{R_{n}^{*}(w)}\underset{w\in {\mathcal {H}} _{n}}{\sup }\frac{trP^{*}(w)}{n} \\&\qquad +2\sigma ^{2}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{1}{ R_{n}^{*}(w)}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{tr^{2}P^{*}(w)}{n}. \end{aligned}$$

By the central limit theorem, we have \({|\Vert e\Vert ^{2}-n\sigma ^{2}|}/ \sqrt{n}=O_{p}(1)\). In addition, it follows from (7) and ( 9) that

$$\begin{aligned} \underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{1}{R_{n}^{*}(w)}=o_{p}(1),\ \ \ \underset{w\in {\mathcal {H}}_{n}}{\sup }tr^{2}P^{*}(w)/n=O(1)\ \ \text { and}\ \ \ \underset{w\in {\mathcal {H}}_{n}}{\sup }trP^{*}(w)/n=o(1). \end{aligned}$$

Together with (26)–(28), (29) is obtained.

To prove (30), we observe that

$$\begin{aligned} \begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }\big (P^{*}(w)- \hat{P}(w)\big )e\big |/R_{n}^{*}(w) \\&\quad \le \frac{1}{\xi _{n}^{*}}\underset{w\in {\mathcal {H}}_{n}}{\sup }\big [ \Vert \mu \Vert ^{2}e^{\prime }\big (P^{*}(w)-\hat{P}(w)\big )^{2}e\big ] ^{1/2} \\&\quad \le \frac{1}{\xi _{n}^{*}}\frac{\Vert \mu \Vert }{\sqrt{n}}\frac{ \Vert e\Vert }{\sqrt{n}}\ n\underset{1\le m\le M}{\max }\lambda _{\max }(P_{(m)}^{*}-\hat{P}_{(m)}). \end{aligned} \end{aligned}$$

By Conditions (8) and (10), (30) is verified.

Note that

$$\begin{aligned} L_{n}(w)=\Vert e\Vert ^{2}+\Vert \hat{A}(w)\mu \Vert ^{2}+\Vert \hat{A} (w)e\Vert ^{2}-2e^{\prime }\hat{A}(w)\mu -2e^{\prime }\hat{A}(w)e+2\mu ^{\prime }\hat{A}^{2}(w)e, \end{aligned}$$

so

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup } |L_{n}(w)-L_{n}^{*}(w)|/R_{n}^{*}(w)\overset{p}{\longrightarrow }0\Leftrightarrow \\&\quad \underset{w\in {\mathcal {H}}_{n}}{\sup } \big |2\mu ^{\prime }\big (P^{*}(w)-\hat{P}(w)\big )\mu +2\mu ^{\prime }\big (P^{*}(w)-\hat{P}(w)\big )e \\&\qquad -\mu ^{\prime }\big (P^{*}(w)+\hat{P}(w)\big )\big (P^{*}(w)-\hat{P} (w)\big )\mu \\&\qquad -e^{\prime }\big (P^{*}(w)+\hat{P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )e \\&\qquad -2\mu ^{\prime }P^{*}(w)\big (P^{{*}}(w)-\hat{P}(w)\big )e \\&\qquad -2\mu ^{\prime }\big (P^{{*}}(w)-\hat{P}(w)\big )\hat{P}(w)e\big |/R_{n}^{*}(w)\overset{p}{\longrightarrow }0. \end{aligned}$$

Thus, if

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }\big (P^{*}(w)+ \hat{P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )\mu \big |/R_{n}^{*}(w) \overset{p}{\longrightarrow }0, \end{aligned}$$
(34)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |e^{\prime }\big (P^{*}(w)+\hat{ P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )e\big |/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(35)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }P^{*}(w)\big ( P^{*}(w)-\hat{P}(w)\big )e\big |/R_{n}^{*}(w)\overset{p}{ \longrightarrow }0, \end{aligned}$$
(36)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }\big (P^{*}(w)- \hat{P}(w)\big )\hat{P}(w)e\big |/R_{n}^{*}(w)\overset{p}{\longrightarrow } 0, \end{aligned}$$
(37)

and

$$\begin{aligned} \underset{w\in {\mathcal {H}}_{n}}{\sup }\big |\mu ^{\prime }\big (P^{*}(w)- \hat{P}(w)\big )\mu \big |/R_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(38)

then (32) is valid. From Condition (8) and the following result

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |e^{\prime }\big (P^{*}(w)+ \hat{P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )e\big |/R_{n}^{*}(w) \\&\quad \le \frac{1}{2\xi _{n}^{*}}\underset{w\in {\mathcal {H}}_{n}}{\sup }\big | e^{\prime }\big [\big (P^{*}(w)+\hat{P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )\\&\qquad +\,\big (P^{*}(w)-\hat{P}(w)\big )\big (P^{*}(w)+\hat{P}(w)\big )\big ]e\big | \\&\quad \le \frac{\Vert e\Vert ^{2}}{2\xi _{n}^{*}}\underset{w\in {\mathcal {H}} _{n}}{\sup }\lambda _{\max }\big [\big (P^{*}(w)+\hat{P}(w)\big )\big (P^{*}(w)-\hat{P}(w)\big )\\&\qquad +\,\big (P^{*}(w)-\hat{P}(w)\big )\big (P^{*}(w)+\hat{P}(w)\big )\big ] \\&\quad \le \frac{\Vert e\Vert ^{2}}{\xi _{n}^{*}}\underset{w\in {\mathcal {H}} _{n}}{\sup }\big [\lambda _{\max }\big (P^{*}(w)+\hat{P}(w)\big )\lambda _{\max }\big (P^{*}(w)-\hat{P}(w)\big )\big ] \\&\quad \le \frac{\Vert e\Vert ^{2}}{\xi _{n}^{*}}\underset{w\in {\mathcal {H}} _{n}}{\sup }\big [\lambda _{\max }\big (P^{*}(w)\big )+\lambda _{\max }\big ( \hat{P}(w)\big )\big ]\sum _{m=1}^{M}w_{m}\lambda _{\max }(P_{(m)}^{*}-\hat{ P}_{(m)}) \\&\quad \le \frac{2}{\xi _{n}^{*}}\frac{\Vert e\Vert ^{2}}{n}n\underset{1\le m\le M}{\max }\lambda _{\max }(P_{(m)}^{*}-\hat{P}_{(m)}), \end{aligned}$$

we obtain (35). Similarly, (31), (34) and (38) can be verified. On the other hand, analogous to the proof of (30), one can obtain (36) and (37).

Further, it can be shown that

$$\begin{aligned} \begin{aligned}&\underset{w\in {\mathcal {H}}_{n}}{\sup }\big |trP^{*}(w)\big (\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}\big )\big |/nR_{n}^{*}(w) \\&\quad \le \underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{trP^{*}(w)}{n} \underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{|\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}|}{R_{n}^{*}(w)} \\&\quad \le a_{1}\underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{|\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}|}{R_{n}^{*}(w)}, \end{aligned} \end{aligned}$$

where the last step is from Condition (9). Observe that

$$\begin{aligned}&|\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}| \\&\quad =\, |2\mu ^{\prime }(\hat{P}(w)-P^{*}(w))\mu +\mu ^{\prime }(P^{*}(w)+ \hat{P}(w))(P^{*}(w)-\hat{P}(w))\mu \\&\qquad +2e^{\prime }(\hat{P}(w)-P^{*}(w))e+e^{\prime }(P^{*}(w)+\hat{P} (w))(P^{*}(w)-\hat{P}(w))e \\&\qquad +4\mu ^{\prime }(\hat{P}(w)-P^{*}(w))e+2\mu ^{\prime }P^{*}(w)(P^{*}(w)-\hat{P}(w))e \\&\qquad +2\mu ^{\prime }(P^{*}(w)-\hat{P}(w))\hat{P }(w)e|, \end{aligned}$$

so from (30), (31) and (34)–(38 ), we have

$$\begin{aligned} \underset{w\in {\mathcal {H}}_{n}}{\sup }\frac{|\Vert A^{*}(w)Y\Vert ^{2}-\Vert \hat{A}(w)Y\Vert ^{2}|}{R_{n}^{*}(w)}\overset{p}{ \longrightarrow }0. \end{aligned}$$

Thus, we obtain (33). This completes the proof of Theorem . \(\square \)

The following lemma is used in the proof of Theorem 2.

Lemma 2

For any \(\hat{\gamma }_{(m)}\) and \(\gamma _{(m)}^{*} \in \Gamma \) and any random variable Y, if Assumptions (a.3) and (a.4) are satisfied, and

$$\begin{aligned} |E(Y|z_i=\gamma ,\hat{\gamma }_{(m)})|\le \bar{E}, \end{aligned}$$
(39)

where \(\bar{E}\) is a finite constant, then

$$\begin{aligned} E\big (Y|\text {I}(z_{i}\le \gamma _{(m)}^{*} )-\text {I}(z_{i}\le \hat{\gamma }_{(m)})|\big )=O(n^{-\rho }). \end{aligned}$$
(40)

Proof

The proof is similar to that of Lemma A.1 in Hansen (2000).

$$\begin{aligned} \begin{aligned} \frac{\partial E(Y\text {I}(z_{i}\le \gamma )|\hat{\gamma }_{(m)})}{\partial \gamma }&=\int _{-\infty }^{+\infty }y\frac{\partial \int _{-\infty }^{\gamma }f(y,z|\hat{\gamma }_{(m)})\,dz}{\partial \gamma }dy \\&=\int _{-\infty }^{+\infty }yf(y,\gamma |\hat{\gamma }_{(m)})dy \\&=\int _{-\infty }^{+\infty }yf_{1}(y|\gamma ,\hat{\gamma } _{(m)})f_{2}(\gamma |\hat{\gamma }_{(m)})dy \\&=f_{2}(\gamma |\hat{\gamma }_{(m)})E(Y\big |z_{i}=\gamma ,\hat{\gamma } _{(m)}), \end{aligned} \end{aligned}$$

where f, \(f_{1}\) and \(f_{2}\) are density functions. Let \(C=\bar{f}_{2}\bar{ E}\). By Lagrange’s mean value theorem, there exists a \(\tilde{\gamma }_{(m)}\) between \(\gamma _{(m)}^{*}\) and \(\hat{\gamma }_{(m)}\) such that

$$\begin{aligned}&E(Y\text {I}(z_{i}\le \hat{\gamma }_{(m)})|\hat{\gamma }_{(m)})-E(Y\text {I} (z_{i}\le \gamma _{(m)}^{*})|\hat{\gamma }_{(m)}) \nonumber \\&\quad =f_{2}(\tilde{\gamma }_{(m)}|\hat{\gamma }_{(m)})E(Y\big |z_{i}=\tilde{\gamma }_{(m)},\hat{\gamma }_{(m)})(\hat{\gamma }_{(m)}-\gamma _{(m)}^{*}) \nonumber \\&\quad \le C|\hat{\gamma }_{(m)}-\gamma _{(m)}^{*}|. \end{aligned}$$
(41)

Define \(f_3(\gamma )\) as the density of \(\hat{\gamma }_{(m)}\). By (41) and Assumptions (a.3) and (a.4), we have

$$\begin{aligned}&E\big (Y|\text {I}(z_{i}\le \gamma _{(m)}^{*})-\text {I}(z_{i}\le \hat{ \gamma }_{(m)})|) \\&\quad = \int ^{\bar{\gamma }}_{\underline{\gamma }}E\big (Y|\text {I}(z_{i}\le \gamma _{(m)}^{*})-\text {I}(z_{i}\le \hat{\gamma }_{(m)})|\big |\hat{\gamma } _{(m)}\big ) f_3(\hat{\gamma }_{(m)}) d\hat{\gamma }_{(m)} \\&\quad = \int _{\underline{\gamma }}^{\gamma _{(m)}^{*}}E\big (Y\big (\text {I} (z_{i}\le \gamma _{(m)}^{*})-\text {I}(z_{i}\le \hat{\gamma }_{(m)})\big ) \big |\hat{\gamma }_{(m)}\big ) f_3(\hat{\gamma }_{(m)}) d\hat{\gamma }_{(m)} \\&\qquad +\int ^{\bar{\gamma }}_{\gamma _{(m)}^{*}}E\big (Y\big (\text {I}(z_{i}\le \hat{\gamma }_{(m)})- \text {I}(z_{i}\le \gamma _{(m)}^{*})\big )\big |\hat{ \gamma }_{(m)}\big ) f_3(\hat{\gamma }_{(m)}) d\hat{\gamma }_{(m)} \\&\quad \le \int ^{\bar{\gamma }}_{\underline{\gamma }}C|\hat{\gamma }_{(m)}-\gamma _{(m)}^{*}| f_3(\hat{\gamma }_{(m)}) d\hat{\gamma }_{(m)}=O(n^{-\rho }). \end{aligned}$$

The proof of Lemma 2 is completed. \(\square \)

Proof of Theorem 2

Note that \(\mu ^{\prime } A^{*}(w)e=\mu ^{\prime }e-\mu ^{\prime } P^{*}(w)e\). From the proof of Theorem 1 and the fact that \(\mu ^{\prime }e\) is unrelated to w, Theorem 2 is valid if

$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } |e^{\prime }P^{*}(w)e-\sigma ^2trP^{*}(w)|/Q_n^{*}(w)\overset{p}{ \longrightarrow }0, \end{aligned}$$
(42)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup }|\mu ^{\prime }P^{*}(w)e|/Q_{n}^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(43)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } |L_n^{*}(w)/Q_n^{*}(w)-1|\overset{p }{\longrightarrow }0, \end{aligned}$$
(44)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } |trP^{*}(w)(\Vert A^{*}(w)Y\Vert ^2/n-\sigma ^2)|/Q^{*}_n(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(45)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } \big |\mu ^{\prime }\big (P^{*}(w)-\hat{P}(w)\big )e\big |/Q_n^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(46)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } \big |e^{\prime }\big (P^{*}(w)-\hat{P}(w)\big )e\big |/Q_n^{*}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(47)
$$\begin{aligned}&\underset{w\in {\mathcal {H}}_n}{\sup } |L_n(w)-L_n^{*}(w)|/Q_n^{*}(w) \overset{p}{\longrightarrow }0, \end{aligned}$$
(48)

and

$$\begin{aligned} \underset{w\in {\mathcal {H}}_n}{\sup } \big |trP^{*}(w)\big (\Vert A^{*}(w)Y\Vert ^2 -\Vert \hat{A}(w)Y\Vert ^2\big )\big | /nQ_n^{*}(w)\overset{p}{\longrightarrow }0. \end{aligned}$$
(49)

Because \(x_i\) contains the lag values of \(y_i\), the proofs of (42)–(44) are different from those of (26)–(28).

According to Theorem 3.35 of White (1984), Assumption (a.1) implies that \( x_{(m)i}x_{(m)i}^{\prime }\text {I}(z_{i}\le \gamma _{(m)}^{*})\) is stationary and ergodic. Further, Assumption (a.2) ensures \( E|x_{(m)ij}x_{(m)ik}\text {I}(z_{i}\le \gamma _{(m)}^{*})|<\infty \). By Theorem 3.34 of White (1984), we have

$$\begin{aligned} \frac{X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\overset{p}{\longrightarrow } \left( \begin{array}{cc} E(x_{(m)i}x_{(m)i}^{\prime }\text {I}(z_{i}\le \gamma _{(m)}^{*})) &{} 0 \\ 0 &{} E(x_{(m)i}x_{(m)i}^{\prime }\text {I}(z_{i}>\gamma _{(m)}^{*})) \end{array} \right) \equiv V_{(m)}, \end{aligned}$$
(50)

where \(V_{(m)}\) is an invertible matrix. From Assumptions (a.1) and (a.2), \( x_{i}\text {I}(z_{i}\le \gamma )e_{i}\) is a square integrable stationary martingale difference sequence. Therefore, by the central limit theorem for martingale difference sequence, we obtain \(\frac{1}{\sqrt{n}}X_{(m)}^{*\prime }e\overset{d}{\longrightarrow }N(0,\sigma ^{2}V_{(m)})\). Thus, \(\frac{ 1}{\sqrt{n}}X_{(m)}^{*\prime }e=O_{p}(1)\). Together with the fact that \( k_{M^{*}}\) and M are bounded, it can be shown that

$$\begin{aligned} e^{\prime }P_{(m)}^{*}e=\frac{1}{\sqrt{n}}e^{\prime }X_{(m)}^{*}\left( \frac{X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\right) ^{-1}\frac{1}{\sqrt{n}} X_{(m)}^{*\prime }e=O_{p}(1) \end{aligned}$$
(51)

and

$$\begin{aligned} trP^{*}(w)=\sum _{m=1}^{M}w_{m}trP_{(m)}^{*}\le 2\sum _{m=1}^{M}w_{m}k_{m}\le 2 k_{M^{*}}<\infty . \end{aligned}$$
(52)

From Condition (12), we have

$$\begin{aligned} \underset{w\in {\mathcal {H}}_{n}}{\sup }|e^{\prime }P^{*}(w)e-\sigma ^{2}trP^{*}(w)|/Q_{n}^{*}(w)\le \zeta _{n}^{*-1}\max _{1\le m\le M}|e^{\prime }P_{(m)}^{*}e|+2\zeta _{n}^{*-1}\sigma ^{2}k_{M^{*}}\overset{p}{\longrightarrow }0. \end{aligned}$$
(53)

Consequently, (42) is verified.

Under (51) and Condition (10), it can be shown that

$$\begin{aligned} |\mu ^{\prime }P^{*}(w)e|= & {} |e^{\prime }P^{*}(w)\mu \mu ^{\prime }P^{ *}(w)e|^{\frac{1}{2}} \le \Vert \mu \Vert |e^{\prime }P^{*2}(w)e|^{\frac{1}{2}} \nonumber \\\le & {} \Vert \mu \Vert \lambda _{\text {max}}^{1/2}\big (P^{*}(w)\big )|e^{\prime }P^{*}(w)e|^{1/2} =O_{p}(\sqrt{n}). \end{aligned}$$
(54)

Hence, (43) is valid by Condition (12).

For (44), similar to (54), it can be shown that

$$\begin{aligned} e^{\prime }P^{*2}(w)e=O_{p}(1) \end{aligned}$$
(55)

and

$$\begin{aligned} |\mu ^{\prime }P^{*2}(w)e|=O_{p}(\sqrt{n}). \end{aligned}$$
(56)

In addition,

$$\begin{aligned} trP^{*2}(w)\le \lambda _{\max }\big (P^{*}(w)\big )trP^{*}(w)\le 2k_{M^{*}}. \end{aligned}$$
(57)

Thus,

$$\begin{aligned} |L_{n}^{*}(w)-Q_{n}^{*}(w)|= & {} \big |\Vert P^{*}(w)e\Vert ^{2}-2\mu ^{\prime }A^{*}(w)P^{*}(w)e-\sigma ^{2}trP^{*2}(w)\big | \nonumber \\\le & {} \Vert P^{*}(w)e\Vert ^{2} + 2|\mu ^{\prime }P^{*}(w)e| + 2|\mu ^{\prime }P^{*2}(w)e|+ 2\sigma ^{2}k_{M^{*}} \\= & {} O_{p}(\sqrt{n}). \end{aligned}$$

Hence, (44) holds by Condition (12).

The proof of (45) is similar to that of (29). From the proofs of (30)–(33), if

$$\begin{aligned} n\zeta _{n}^{*-1}\underset{1\le m\le M}{\max }\lambda _{\max }(P_{(m)}^{*}-\hat{P}_{(m)})\overset{p}{\longrightarrow }0, \end{aligned}$$
(58)

then (46)–(49) will hold. In the following, we will verify (58).

By Lemma 2, for the mth candidate model,

$$\begin{aligned} E|x_{(m)ij}x_{(m)ik}\big (\text {I}(z_{i}\le \gamma _{(m)}^{*})-\text {I} (z_{i}\le \hat{\gamma }_{(m)})\big )|=O(n^{-\rho }) \end{aligned}$$

uniformly in i. Hence,

$$\begin{aligned} \frac{X_{(m)}^{*\prime }X_{(m)}^{*}}{n}-\frac{\hat{X}_{(m)}^{\prime } \hat{X}_{(m)}}{n}=O_{p}(n^{-\rho }), \end{aligned}$$
(59)

and

$$\begin{aligned} \frac{(X_{(m)}^{*}-\hat{X}_{(m)})^{\prime }(X_{(m)}^{*}-\hat{X} _{(m)})}{n}=O_{p}(n^{-\rho }). \end{aligned}$$
(60)

From (50) and (59), it follows that

$$\begin{aligned} \frac{\hat{X}_{(m)}^{\prime }\hat{X}_{(m)}}{n}\overset{p}{\longrightarrow } V_{(m)}. \end{aligned}$$
(61)

Thus, by (50), (59) and (61), we obtain

$$\begin{aligned} \left( \frac{X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\right) ^{-1}-\left( \frac{ \hat{X}_{(m)}^{\prime }\hat{X}_{(m)}}{n}\right) ^{-1}=O_{p}(n^{-\rho }). \end{aligned}$$
(62)

Note that

$$\begin{aligned} P_{(m)}^{*}-\hat{P}_{(m)}= & {} X_{(m)}^{*}[(X_{(m)}^{*\prime }X_{(m)}^{*})^{-1}-(\hat{X}_{(m)}^{\prime }\hat{X}_{(m)})^{-1}]X_{(m)}^{ *\prime } \nonumber \\&-(\hat{X}_{(m)}-X_{(m)}^{*})(\hat{X}_{(m)}^{\prime }\hat{X} _{(m)})^{-1}(\hat{X}_{(m)}-X_{(m)}^{*})^{\prime } \nonumber \\&-(\hat{X}_{(m)}-X_{(m)}^{*})(\hat{X}_{(m)}^{\prime }\hat{X} _{(m)})^{-1}X_{(m)}^{*\prime } \nonumber \\&-X_{(m)}^{*}(\hat{X}_{(m)}^{\prime } \hat{X}_{(m)})^{-1}(\hat{X}_{(m)}-X_{(m)}^{*})^{\prime } \nonumber \\\equiv & {} \Delta P_{(m)1}+\Delta P_{(m)2}+\Delta P_{(m)3}+\Delta P_{(m)4}. \end{aligned}$$
(63)

By using (60)–(62), we have

$$\begin{aligned} \lambda _{\max }(\Delta P_{(m)1})\le & {} \lambda _{\max }\left[ \left( \frac{ X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\right) ^{-1}-\left( \frac{\hat{X} _{(m)}^{\prime }\hat{X}_{(m)}}{n}\right) ^{-1}\right] \lambda _{\max }\left( \frac{ X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\right) \\= & {} O_{p}(n^{-\rho }), \\ \lambda _{\max }(\Delta P_{(m)2})\le & {} \lambda _{\max }\left[ \left( \frac{\hat{X} _{(m)}^{\prime }\hat{X}_{(m)}}{n}\right) ^{-1}\right] \lambda _{\max }\left( \frac{( \hat{X}_{(m)}-X_{(m)}^{*})^{\prime }(\hat{X}_{(m)}-X_{(m)}^{*})}{n} \right) \\= & {} O_{p}(n^{-\rho }), \end{aligned}$$

and

$$\begin{aligned}&\lambda _{\max }(\Delta P_{(m)3})=\lambda _{\max }(\Delta P_{(m)4}) \\&\quad =\lambda _{\max }^{1/2}\big ((\hat{X}_{(m)}-X_{(m)}^{*})(\hat{X} _{(m)}^{\prime }\hat{X}_{(m)})^{-1}X_{(m)}^{*\prime }X_{(m)}^{*}( \hat{X}_{(m)}^{\prime }\hat{X}_{(m)})^{-1}(\hat{X}_{(m)}-X_{(m)}^{*})^{\prime }\big ) \\&\quad \le \lambda _{\max }\left[ \left( \frac{\hat{X}_{(m)}^{\prime }\hat{X}_{(m)}}{ n}\right) ^{-1}\right] \lambda _{\max }^{1/2}\left( \frac{X_{(m)}^{*\prime }X_{(m)}^{*}}{n}\right) \nonumber \\&\quad \quad \quad \lambda _{\max }^{1/2}\left( \frac{(\hat{X} _{(m)}-X_{(m)}^{*})^{\prime }(\hat{X}_{(m)}-X_{(m)}^{*})}{n}\right) \\&\quad =O_{p}(n^{-\rho /2}). \end{aligned}$$

Therefore,

$$\begin{aligned} \lambda _{\max }(P_{(m)}^{*}-\hat{P}_{(m)})\le & {} \lambda _{\max }(\Delta P_{(m)1})+\lambda _{\max }(\Delta P_{(m)2})\\&+\lambda _{\max }(\Delta P_{(m)3})+\lambda _{\max }(\Delta P_{(m)4})\\= & {} O_{p}(n^{-\rho /2}). \end{aligned}$$

Thus, (58) holds under Condition (12). The proof of Theorem 2 is completed. \(\square \)

Proof of Theorem 3

Let \(A(w)=I_{n}-P(w)\). From Lemma 1, we need only to verify that

$$\begin{aligned} \underset{w\in \widetilde{{\mathcal {H}}}_{n}}{\sup }|\mu ^{\prime }A(w)e|/ \widetilde{R}_{n}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(64)
$$\begin{aligned} \underset{w\in \widetilde{{\mathcal {H}}}_{n}}{\sup }|e^{\prime }P(w)e-\sigma ^{2}trP(w)|/\widetilde{R}_{n}(w)\overset{p}{\longrightarrow }0, \end{aligned}$$
(65)
$$\begin{aligned} \underset{w\in \widetilde{{\mathcal {H}}}_{n}}{\sup }|\widetilde{L}_{n}(w)/ \widetilde{R}_{n}(w)-1|\overset{p}{\longrightarrow }0, \end{aligned}$$
(66)

and

$$\begin{aligned} \underset{w\in \widetilde{{\mathcal {H}}}_{n}}{\sup }|trP(w)(\Vert A(w)Y\Vert ^{2}/n-\sigma ^{2})|/\widetilde{R}_{n}(w)\overset{p}{\longrightarrow }0. \end{aligned}$$
(67)

We obtain (64)–(66) by following the proof of Theorem \( \text {1}^{\prime }\) of Wan et al. (2010), while (67) is valid from the proof of (29). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, X., Wang, S. et al. Frequentist model averaging for threshold models. Ann Inst Stat Math 71, 275–306 (2019). https://doi.org/10.1007/s10463-017-0642-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-017-0642-9

Keywords

Navigation