Skip to main content
Log in

Testing equality between several populations covariance operators

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In many situations, when dealing with several populations, equality of the covariance operators is assumed. An important issue is to study whether this assumption holds before making other inferences. In this paper, we develop a test for comparing covariance operators of several functional data samples. The proposed test is based on the Hilbert–Schmidt norm of the difference between estimated covariance operators. In particular, when dealing with two populations, the test statistic is just the squared norm of the difference between the two covariance operators estimators. The asymptotic behaviour of the test statistic under both the null hypothesis and local alternatives is obtained. The computation of the quantiles of the null asymptotic distribution is not feasible in practice. To overcome this problem, a bootstrap procedure is considered. The performance of the test statistic for small sample sizes is illustrated through a Monte Carlo study and on a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benjamini, Y., Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

  • Benko, M., Härdle, P., Kneip, A. (2009). Common functional principal components. Annals of Statistics, 37, 1–34.

  • Boente, G., Fraiman, R. (2000). Kernel-based functional principal components. Statistics and Probability Letters, 48, 335–345.

  • Boente, G., Rodriguez, D., Sued, M. (2010). Inference under functional proportional and common principal components models. Journal of Multivariate Analysis, 101, 464–475.

  • Boente, G., Rodriguez, D., Sued, M. (2014). Testing equality between several covariance operators. Preprint available at https://arxiv.org/pdf/1404.7080v2.pdf

  • Cabassi, A., Pigoli, D., Secchi, P., Carter, P. A. (2017). Permutation tests for the equality of covariance operators of functional data with applications to evolutionary biology. Preprint available at https://arxiv.org/pdf/1701.05870.pdf

  • Chang, C., Ogden, R. T. (2009). Bootstrapping sums of independent but not identically distributed continuous processes with applications to functional data. Journal of Multivariate Analysis, 100, 1291–1303.

  • Coffey, N., Harrison, A. J., Donaghue, O. A., Hayes, K. (2011). Common functional principal components analysis: A new approach to analyzing human movement data. Human Movement Science, 30, 1144–1166.

  • Cuesta-Albertos, J., Febrero-Bande, M. (2010). A simple multiway ANOVA for functional data. Test, 19, 537–557.

  • Cuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Dauxois, J., Pousse, A., Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference. Journal of Multivariate Analysis, 12, 136–154.

  • Donoghue, O., Harrison, A. J., Coffey, N., Hayes, K. (2008). Functional data analysis of running kinematics in chronic Achilles tendon injury. Medicine and Science in Sports and Exercise, 40, 1323–1335.

  • Ferraty, F., Romain, Y. (2010). The oxford handbook of functional data analysis. Oxford: Oxford University Press.

  • Ferraty, F., Vieu, Ph. (2006). Nonparametric functional data analysis: Theory and practice. Springer Series in Statistics New York: Springer.

  • Ferraty, F., Vieu, Ph, Viguier-Pla, S. (2007). Factor-based comparison of groups of curves. Computational Statistics and Data Analysis, 51, 4903–4910.

  • Ferraty, F., Van Keilegom, I., Vieu, Ph. (2010). On the validity of the bootstrap in non-parametric functional regression. Scandinavian Journal of Statistics, 37, 286–306.

  • Ferraty, F., Van Keilegom, I., Vieu, Ph. (2012). Regression when both response and predictor are functions. Journal of Multivariate Analysis, 109, 10–28.

  • Fremdt, S., Steinebach, J. G., Horváth, L., Kokoszka, P. (2013). Testing the equality of covariance operators in functional samples. Scandinavian Journal of Statistics, 40, 138–52.

  • Gaines, G., Kaphle, K., Ruymgaart, F. (2011). Application of a delta-method for random operators to testing equality of two covariance operators. Mathematical Methods of Statistics, 20, 232–245.

  • Goia, A., Vieu, P. (2016). An introduction to recent advances in high/infinite-dimensional statistics. Journal of Multivariate Analysis, 146, 1–6.

  • Gupta, A., Xu, J. (2006). On some tests of the covariance matrix under general conditions. Annals of the Institute of Statistical Mathematics, 58, 101–114.

  • Hastie, T., Buja, A., Tibshirani, R. (1995). Penalized discriminant analysis. Annals of Statistics, 23(1), 73–102.

  • Horváth, L., Kokoszka, P. (2012). Inference for functional data with applications. New York: Springer.

  • Hsing, T., Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. New York: Wiley.

  • Kato, T. (1966). Perturbation theory for linear operators. New York: Springer.

    Book  MATH  Google Scholar 

  • Morales, D., Pardo, L., Pardo, M. C., Vajda, I. (2004). Rényi statistics for testing composite hypotheses in general exponential models. Statistics, 38, 133–147.

  • Neuhaus, G. (1980). A note on computing the distribution of the norm of Hilbert space valued Gaussian random variables. Journal of Multivariate Analysis, 10, 19–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Panaretos, V. M., Kraus, D., Maddocks, J. H. (2010). Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles. Journal of the American Statistical Association, 105, 670–682.

  • Paparoditis, E., Sapatinas, T. (2016). Bootstrap-based testing of equality of mean functions or equality of covariance operators for functional data. Biometrika, 103, 727–733.

  • Pigoli, D., Aston, J. A., Dryden, I., Secchi, P. (2014). Distances and inference for covariance operators. Biometrika, 101, 409–422.

  • Ramsay, J. O., Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.

  • Raña, P., Aneiros, G., Vilar, J. (2016). Bootstrap confidence intervals in functional nonparametric regression under dependence. Electronic Journal of Statistics, 10, 1973–1999.

  • Silverman, B. W. (1986). Density estimation. London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Van der Vaart, A. (2000). Asymptotic statistics. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Associate Editor and two anonymous referees for valuable comments which led to an improved version of the original paper. This research was partially supported by Grants pip 112-201101-00339 and 112-201101-00742 from conicet, pict 2014-0351 and 2012-1641 from anpcyt and 20020130100279ba and 20020120200244ba from the Universidad de Buenos Aires at Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela Sued.

Appendix

Appendix

Proof of Theorem 1. Denote as \({\mathcal {F}}^{k}={\mathcal {F}}\times \dots \times {\mathcal {F}}\) the \(k-\)th dimensional product space of identical copies of \({\mathcal {F}}\) and consider the process \(\mathbf V_{k,n}=\left( \sqrt{n} (\widetilde{\varvec{\varGamma }}_1-\varvec{\varGamma }_1), \dots , \right. \left. \sqrt{n} (\widetilde{\varvec{\varGamma }}_k-\varvec{\varGamma }_k)\right) ^{{t}}\). Using that \(\sqrt{n}_i\left( {\widetilde{\varvec{\varGamma }}_i}-\varvec{\varGamma }_i\right) \buildrel {D}\over \longrightarrow \mathbf U_i\), the independence of the estimated operators and the fact that \(n_i/n\rightarrow \tau _i\in (0,1)\), we get that \(\mathbf V_{k,n} \buildrel {D}\over \longrightarrow \mathbf V=(\mathbf V_1,\ldots ,\mathbf V_k)^{{t}}\), where \(\mathbf V_i=\tau _i^{-1/2}\mathbf U_i\) are independent random processes of \({\mathcal {F}}\) with covariance operators \({\tau _i}^{-1}\varvec{\varUpsilon }_i\). Hence, \(\mathbf V_{k,n}\) converges in distribution to a zero mean Gaussian random element \(\mathbf V=(\mathbf V_1,\ldots ,\mathbf V_k)^{{t}}\in {\mathcal {F}}^{k}\) with covariance operator \(\widetilde{\varvec{\varUpsilon }}=\text{ diag }\left( {\tau _1}^{-1}\varvec{\varUpsilon }_1,\dots , {\tau _k}^{-1}\varvec{\varUpsilon }_k\right) \).

Let \(A:{\mathcal {F}}^{k}\rightarrow {\mathcal {F}}^{k-1}\) be the linear operator defined as \(A(V_1,\ldots ,V_k)=(V_2-V_1,\ldots ,V_k-V_1) \) and denote as \(A^*:{\mathcal {F}}^{k-1}\rightarrow {\mathcal {F}}^{k}\) its adjoint operator. The continuous map theorem guarantees that \( A\mathbf V_{k,n} \buildrel {D}\over \longrightarrow \mathbf W\), where \(\mathbf W=(W_1,\dots , W_{k-1})^{{t}}= A \mathbf V\) is a zero mean Gaussian random element of \({\mathcal {F}}^{k-1}\) with covariance operator \(\varvec{\varUpsilon }_{{w}}=A\widetilde{\varvec{\varUpsilon }}\, A^*\). Moreover, we also obtain that \(n \sum _{j=2}^k\Vert (\widetilde{\varvec{\varGamma }}_j-\varvec{\varGamma }_j)-(\widetilde{\varvec{\varGamma }}_1-\varvec{\varGamma }_1)\Vert _{\mathcal {F}}^2 \buildrel {D}\over \longrightarrow \sum _{j=1}^{k-1} \Vert W_j\Vert _{\mathcal {F}}^2=\Vert \mathbf W\Vert _{{\mathcal {F}}^{k-1}}^2\). Let \(\upsilon _\ell \in {\mathcal {F}}^{k-1}\) be the orthonormal eigenfunctions of \(\varvec{\varUpsilon }_{{w}}\) related to the eigenvalues \(\theta _\ell \) ordered in decreasing order. Since \(\mathbf W\) is a zero mean Gaussian random element of \({\mathcal {F}}^{k-1}\) with covariance operator \(\varvec{\varUpsilon }_{{w}}\), \(\mathbf W\) can be written as \(\sum _{\ell \,\ge 1} \theta _\ell ^{1/2} Z_\ell \,\upsilon _\ell \) where \(Z_\ell \) are i.i.d. random variables such that \(Z_\ell \sim N(0,1)\). Hence, \(\Vert \mathbf W\Vert _{{\mathcal {F}}^{k-1}}^2=\sum _{\ell \,\ge 1} \theta _\ell Z_\ell ^2\), which leads to the desired result.

It only remains to show (7). Straightforward calculations allow to show that the adjoint operator \(A^*:{\mathcal {F}}^{k-1}\rightarrow {\mathcal {F}}^k\) is given by \( A^*(w_1,\dots ,w_{k-1})\;=\;(-\sum _{i=1}^{k-1}w_i,w_1,\dots ,w_{k-1})\). Hence, as \(\mathbf U_1,\ldots ,\mathbf U_k\) are independent, we obtain that

$$\begin{aligned} \varvec{\varUpsilon }_{{w}}(w_1,\dots ,w_{k-1})&=(A\widetilde{\varvec{\varUpsilon }}\, A^*)(w_1,\dots ,w_{k-1})\\&= \left( \frac{1}{\tau _2}\varvec{\varUpsilon }_2(w_1)+\frac{1}{\tau _1}\varvec{\varUpsilon }_1 \left( \sum _{i=1}^{k-1}w_i\right) ,\dots , \frac{1}{\tau _{k}}\varvec{\varUpsilon }_{k} (w_{k-1}) \right. \\&\left. +\frac{1}{\tau _1}\varvec{\varUpsilon }_1 \left( \sum _{i=1}^{k-1}w_i\right) \right) , \end{aligned}$$

concluding the proof.\(\square \)

Proof of Corollary 1. Consider the process \( \mathbf U_{i,n_i}=\sqrt{n}_i (\widehat{\varvec{\varGamma }}_i-\varvec{\varGamma }_i) \). The independence of the samples and among populations together with the results stated in Dauxois et al. (1982), allow to show that \( \mathbf U_{i,n_i}\) are independent and converge in distribution to independent zero mean Gaussian random elements \(\mathbf U_i\) of \({\mathcal {F}}\) with covariance operator \(\varvec{\varUpsilon }_i\) defined in (1). The result follows now from Theorem 1.\(\square \)

Proof of Theorem 2. Using that \(n_i/n\rightarrow \tau _i\), we get immediately that \(\sqrt{n} \left( \widetilde{\varvec{\varGamma }}_i-\varvec{\varGamma }_1\right) \buildrel {D}\over \longrightarrow \varvec{\varDelta }_i+ (1/\sqrt{\tau _i})\mathbf U_i\) where \(\mathbf U_i\) is a zero mean Gaussian random element with covariance operator \(\varvec{\varUpsilon }_i\) and for \(i=1\), \(\varvec{\varDelta }_1=\mathbf O\) is the null operator. The fact that the estimators are independent implies that \(\mathbf U_i\) can be chosen to be independent so, as in the proof of Theorem 1, we have that \(\mathbf V_{k,n}=\left( \sqrt{n} (\widetilde{\varvec{\varGamma }}_1-\varvec{\varGamma }_1), \dots , \sqrt{n} (\widetilde{\varvec{\varGamma }}_k-\varvec{\varGamma }_1)\right) ^{{t}} \buildrel {D}\over \longrightarrow \mathbf V=(\mathbf V_1,\ldots ,\mathbf V_k)^{{t}}\), where \(\mathbf V_i= \varvec{\varDelta }_i+ (1/\sqrt{\tau _i})\mathbf U_i\) are independent random processes of \({\mathcal {F}}\) with mean \( \varvec{\varDelta }_i\) and covariance operators \({\tau _i}^{-1}\varvec{\varUpsilon }_i\). Hence, \(\mathbf V_{k,n}\) converges in distribution to a Gaussian random element \(\mathbf V=(\mathbf V_1,\ldots ,\mathbf V_k)^{{t}}\in {\mathcal {F}}^{k}\) with mean \(\varvec{\varDelta }=(\varvec{\varDelta }_1,\dots , \varvec{\varDelta }_k)^{{t}}\) and covariance operator \(\widetilde{\varvec{\varUpsilon }}=\text{ diag }\left( {\tau _1}^{-1}\varvec{\varUpsilon }_1,\dots , {\tau _k}^{-1}\varvec{\varUpsilon }_k\right) \).

As in the proof of Theorem 1, define \(A:{\mathcal {F}}^{k}\rightarrow {\mathcal {F}}^{k-1}\) as the linear operator \(A(V_1,\ldots ,V_k)=(V_2-V_1,\ldots ,V_k-V_1) \). Then, \( A\mathbf V_{k,n} \buildrel {D}\over \longrightarrow \mathbf W\), where \(\mathbf W=(W_1,\dots , W_{k-1})^{{t}}= A \mathbf V\) is a Gaussian random element of \({\mathcal {F}}^{k-1}\) with mean \(A\varvec{\varDelta }\) and covariance operator \(A\widetilde{\varvec{\varUpsilon }}\, A^*\). Using that \(\varvec{\varDelta }_1\) is the null operator, we obtain that \(A\varvec{\varDelta }=(\varvec{\varDelta }_2,\dots , \varvec{\varDelta }_k)=\varvec{\varDelta }^{(k-1)}\). Moreover, from the proof of Theorem 1 we get that \(A\widetilde{\varvec{\varUpsilon }}\, A^*=\varvec{\varUpsilon }_{{w}}\). Let \(\upsilon _\ell \in {\mathcal {F}}^{k-1}\) be the orthonormal eigenfunctions of \(\varvec{\varUpsilon }_{{w}}\) related to the eigenvalues \(\theta _\ell \) ordered in decreasing order. Since \(\mathbf W- \varvec{\varDelta }^{(k-1)}\) is a zero mean Gaussian random element of \({\mathcal {F}}^{k-1}\) with covariance operator \(\varvec{\varUpsilon }_{{w}}\), \(\mathbf W- \varvec{\varDelta }^{(k-1)}\) can be written as \(\sum _{\ell \,\ge 1} \theta _\ell ^{1/2} Z_\ell \,\upsilon _\ell \) where \(Z_\ell \) are i.i.d. random variables such that \(Z_\ell \sim N(0,1)\). On the other hand, we have the expansion \(\varvec{\varDelta }^{(k-1)}=\sum _{\ell \,\ge 1} \eta _\ell \,\upsilon _\ell \), so that \(\mathbf W= \sum _{\ell \,\ge 1} \left( \eta _\ell +\theta _\ell ^{1/2} Z_\ell \right) \upsilon _\ell \) and \(\Vert \mathbf W\Vert _{{\mathcal {F}}^{k-1}}^2=\sum _{\ell \,\ge 1} \left( \eta _\ell +\theta _\ell ^{1/2} Z_\ell \right) ^2=\sum _{\ell \ge 1} \theta _\ell \left( \eta _\ell \,\theta _\ell ^{-1/2}+ Z_\ell \right) ^2\), which concludes the proof since \(T_{k,n}=n \sum _{j=2}^k\Vert (\widehat{\varvec{\varGamma }}_j-\varvec{\varGamma }_1)-(\widehat{\varvec{\varGamma }}_1-\varvec{\varGamma }_1)\Vert _{\mathcal {F}}^2 \buildrel {D}\over \longrightarrow \sum _{j=1}^{k-1} \Vert W_j\Vert _{\mathcal {F}}^2=\Vert \mathbf W\Vert _{{\mathcal {F}}^{k-1}}^2\).\(\square \)

Proof of Proposition 1. The results in Dauxois et al. (1982) entail that \(\sqrt{n_1} \left( \widehat{\varvec{\varGamma }}_{1}-\varvec{\varGamma }_1\right) \buildrel {D}\over \longrightarrow \mathbf U_1\), where \(\mathbf U_1\) a zero mean Gaussian random element with covariance operator \(\varvec{\varUpsilon }_1\) so, we only have to prove the result for \(i\ge 2\). We have the following decomposition for \(\sqrt{n_i}(\widehat{\varvec{\varGamma }}_i-\varvec{\varGamma }_1)\),

$$\begin{aligned} \sqrt{n_i}(\widehat{\varvec{\varGamma }}_i-\varvec{\varGamma }_1)\!\!= & {} \sqrt{n_i}\left( \frac{1}{n_i}\sum _{j=1}^{n_i}(X_{i,j}- \overline{X}_{i})\otimes (X_{i,j}-\overline{X}_{i})-\varvec{\varGamma }_1\right) \\= & {} \sqrt{n_i}(\widetilde{\varvec{\varGamma }}_i-\varvec{\varGamma }_1)+{n^{-1/4}}{\sqrt{n_i}}\;\widehat{\varvec{\varGamma }}_{i,WR}+{n^{-1/4}}{\sqrt{n_i}}\;\widehat{\varvec{\varGamma }}_{i,RW}+{n^{-1/2}}\sqrt{n_i}\;\widehat{\varvec{\varDelta }}_i \end{aligned}$$

where

$$\begin{aligned}&\widetilde{\varvec{\varGamma }}_i = \frac{1}{n_i}\sum _{j=1}^{n_i}(W_{i,j}-\overline{W}_{i})\otimes (W_{i,j}-\overline{W}_{i}),\quad \widehat{\varvec{\varDelta }}_i= \frac{1}{n_i}\sum _{j=1}^{n_i}(R_{i,j}-\overline{R}_{i})\otimes (R_{i,j}-\overline{R}_{i})\,,\\&\widehat{\varvec{\varGamma }}_{i,WR} = \frac{1}{n_i}\sum _{j=1}^{n_i}(W_{i,j}-\overline{W}_{i})\otimes (R_{i,j}-\overline{R}_{i}) \quad \text{ and }\\&\widehat{\varvec{\varGamma }}_{i,RW} = \frac{1}{n_i}\sum _{j=1}^{n_i}(R_{i,j}-\overline{R}_{i})\otimes (W_{i,j}-\overline{W}_{i})\,. \end{aligned}$$

Using that \(W_{i,j}\sim W_i\) and that the covariance operator of \(W_i\) is \(\varvec{\varGamma }_1\), from the results in Dauxois et al. (1982) we get that \(\sqrt{n_i} \left( \widetilde{\varvec{\varGamma }}_{i}-\varvec{\varGamma }_1\right) \buildrel {D}\over \longrightarrow \mathbf U_i\), where \(\mathbf U_i\) a zero mean Gaussian random element with covariance operator \(\varvec{\varUpsilon }_i\) given in (11).

It is worth noticing that \(\widehat{\varvec{\varGamma }}_{i,WR}\) and \(\widehat{\varvec{\varGamma }}_{i,RW}\) are estimators of the cross covariance operators \(\varvec{\varGamma }_{i,WR}=\mathbb {E}\left\{ (W_{i}-\mathbb {E}{W}_{i})\otimes \right. \) \(\left. (R_{i}- \mathbb {E}{R}_{i})\right\} \) and \(\varvec{\varGamma }_{i,RW}=\mathbb {E}\left\{ (R_{i}-\mathbb {E}{R}_{i})\otimes \right. \left. (W_{i}-\mathbb {E}{W}_{i})\right\} \), respectively. The independence between \(W_{i}\) and \(R_{i}\) entails that \(\varvec{\varGamma }_{i,WR}\) is the null operator, which implies that \(\sqrt{n_i}\;\widehat{\varvec{\varGamma }}_{i,WR}\) is bounded in probability, so that \(n^{-1/4}\sqrt{n_i}\;\widehat{\varvec{\varGamma }}_{i,WR} \buildrel {p}\over \longrightarrow 0\). Similarly, we obtain that \(n^{-1/4}\sqrt{n_i}\;\widehat{\varvec{\varGamma }}_{i,RW} \buildrel {p}\over \longrightarrow 0\).

Finally, using the law of large numbers we have that \(\widehat{\varvec{\varDelta }}_i\), the empirical covariance operator of \(R_{i}\), converges in probability to \(\varvec{\varDelta }_i\), so \({n^{-1/2}}\sqrt{n_i}\;\widehat{\varvec{\varDelta }}_i \buildrel {p}\over \longrightarrow \tau _i^{1/2}\varvec{\varDelta }_i\), concluding the proof of a). \(\square \)

Proof of Proposition 2. As in the proof of Proposition 1, we only have to prove the result for \(i\ge 2\). Using the Karhunen–Loéve representation, we can write

$$\begin{aligned} X_{1,j}= & {} \mu _1+\;\sum _{\ell =1}^\infty \lambda _\ell ^{\frac{1}{2}}\,\,f_{1\ell j}\,\,\phi _\ell ,\;1\le j\le n_1\\ X_{i,j}= & {} \mu _i+\;\sum _{\ell =1}^\infty \lambda _\ell ^{\frac{1}{2}}\,\left( 1+\frac{\Delta _{i,\ell }}{\sqrt{n}}\right) ^{\frac{1}{2}}\,f_{i\ell j}\,\phi _\ell \,, \quad 1\le j\le n_i\,,\quad 2\le i\le k, \end{aligned}$$

where \(f_{i\ell j}\sim f_{i\ell }\) in (12). For \(1\le j\le n_i\), let \(Z_{i,j}=\mu _i+\;\sum _{\ell =1}^\infty \lambda _\ell ^{\frac{1}{2}}\,f_{i\ell j}\,\phi _\ell =\mu _i+Z_{0,i,j}\). Denote as

$$\begin{aligned} V_{i,j}= X_{i,j}-Z_{i,j}=\sum _{\ell =1}^\infty \lambda _\ell ^{\frac{1}{2}}\left[ \left( 1+\frac{\Delta _{i,\ell }}{\sqrt{n}}\right) ^{\frac{1}{2}}-1\right] \,f_{i\ell j}\,\phi _\ell \;. \end{aligned}$$

Define the following operators that will be used in the sequel \(\widetilde{\varvec{\varGamma }}_i= (1/{n_i}) \sum _{j=1}^{n_i}\) \(\left( X_{i,j}-\mu _i\right) \otimes \left( X_{i,j}-\mu _i\right) \) , \(\widehat{\varvec{\varGamma }}_{Z_0}= (1/{n_i}) \sum _{j=1}^{n_i} Z_{0,i,j}\otimes Z_{0,i,j}\), \(\widehat{\varvec{\varGamma }}_V = (1/{n_i}) \sum _{j=1}^{n_i}\) \(V_{i,j}\otimes V_{i,j}\) and finally, \( \widetilde{\mathbf A}= (1/{n_i}) \sum _{j=1}^{n_i} (Z_{0,i,j}\otimes V_{i,j}+V_{i,j}\otimes Z_{0,i,j})\), where we avoid the index i for the sake of simplicity. Using that \(X_{i,j}-\mu _i=Z_{0, i, j} +V_{i, j}\), we obtain the following expansion \(\widetilde{\varvec{\varGamma }}_i=\widehat{\varvec{\varGamma }}_{Z_0}+ \widehat{\varvec{\varGamma }}_V+\widetilde{\mathbf A}\).

The proof will be carried out in several steps, by showing that

$$\begin{aligned} \sqrt{n_i}(\widehat{\varvec{\varGamma }}_i- \widetilde{\varvec{\varGamma }}_i)= & {} o_{\mathbb {P}}(1)\\ \sqrt{n_i} \,\widehat{\varvec{\varGamma }}_V= & {} o_{\mathbb {P}}(1)\\ \sqrt{n_i}\, \widetilde{\mathbf A}&\buildrel {p}\over \longrightarrow&\tau _i^{\frac{1}{2}} \varvec{\varDelta }_i \\ \sqrt{n_i}\,(\widehat{\varvec{\varGamma }}_{Z_0}-\varvec{\varGamma }_1)&\buildrel {D}\over \longrightarrow&\mathbf U_i, \end{aligned}$$
(15)

where \(\mathbf U_i\) is a zero mean Gaussian random element with covariance operator \(\varvec{\varUpsilon }_i\). Using that, for all \(2\le i \le k\), the covariance operator of \(Z_{0,i,j}\) is \(\varvec{\varGamma }_1\), (18) follows from Dauxois et al. (1982).

We will derive (15). Noticing that \(\widehat{\varvec{\varGamma }}_i- \widetilde{\varvec{\varGamma }}_i=-\left( \overline{X}_{i}-\mu _i\right) \otimes \left( \overline{X}_{i}-\mu _i\right) \), it will be enough to prove that \(\sqrt{n_i} \left( \overline{X}_{i}-\mu _i\right) =\sqrt{n_i} \left( \overline{Z}_{0,i} +\overline{V}_i \right) =O_\mathbb {P}(1)\), with \(\overline{Z}_{0,i}=(1/{n_i}) \sum _{j=1}^{n_i} Z_{0,i,j}\) and \(\overline{V}_i=(1/{n_i}) \sum _{j=1}^{n_i} V_{i,j}\).

By the central limit theorem in Hilbert spaces, we get that \(\sqrt{n_i}\,\overline{Z}_{0,i}\) converges in distribution, which entails that the process is tight, i.e., \(\sqrt{n_i}\,\overline{Z}_{0,i}=O_{\mathbb {P}}(1)\).

We have that

$$\begin{aligned} \left( 1+\frac{\Delta _{i,\ell }}{\sqrt{n}}\right) ^{\frac{1}{2}}-1= \frac{1}{\sqrt{n}}\, \frac{\Delta _{i,\ell }}{\left( 1+\frac{\Delta _{i,\ell }}{\sqrt{n}}\right) ^{\frac{1}{2}}+1}= a_{i,\ell ,n}\frac{\Delta _{i,\ell }}{\sqrt{n}} \end{aligned}$$
(16)

where \(0\le a_{i,\ell ,n}\le 1\).

To derive that \(\sqrt{n_i}\,\overline{V}_i=O_\mathbb {P}(1)\), we will further show that \(\sqrt{n_i}\,\overline{V}_i=o_\mathbb {P}(1)\). To do so, notice that \( \mathbb {E}\,\Vert \overline{V}_i\Vert ^2 =({1}/{n_i})\sum _{\ell =1}^\infty \lambda _\ell \left[ \left( 1+({\Delta _{i,\ell }}/{\sqrt{n}})\right) ^{\frac{1}{2}}-1\right] ^2\). Using (19), we get that \(\mathbb {E}(\Vert \sqrt{n_i} \,\overline{V}_i\Vert ^2)\le ({1}/{n}) \sum _{\ell =1}^\infty \lambda _\ell \Delta _{i,\ell }^2 \), concluding the proof of (15).

To obtain (16), notice that (19) entails that \(V_{i,j}\otimes V_{i,j} =(1/{n})\sum _{\ell , s} \lambda _\ell ^{\frac{1}{2}}\lambda _s^{\frac{1}{2}} a_{i,\ell ,n} a_{i,s,n}\) \( \Delta _{i,s} \Delta _{i,\ell } f_{i \ell j} f_{i s j}\phi _\ell \otimes \phi _s\),

so if we denote as \(U_{\ell s}=({1}/{n_i})\sum _{j=1}^{n_i}f_{i \ell j}\, \,f_{i sj}\), we get that

$$\begin{aligned} \widehat{\varvec{\varGamma }}_V= \frac{1}{n} \sum _{\ell , s} \lambda _\ell ^{\frac{1}{2}}\lambda _s^{\frac{1}{2}}a_{i,\ell ,n} \, a_{i,s,n} \Delta _{i,s} \Delta _{i,\ell } \, U_{\ell s}\,\;\phi _\ell \otimes \phi _s\,. \end{aligned}$$

Recall that \(f_{i \ell j}\sim f_{i \ell }\) and \(\mathbb {E}(f_{i \ell }f_{i s})=\delta _{\ell s}\), where \(\delta _{\ell s}=1\) if \(\ell =s\) and 0 otherwise. Hence, we have that \(\mathbb {E}(U_{\ell s})= \delta _{\ell s}\) which implies that

$$\begin{aligned} \mathbb {E}(U^2_{\ell s})= & {} {Var}(U_{\ell s})+ \mathbb {E}^2 (U_{\ell s})=\frac{1}{n_i}{Var}(f_{i\ell }f_{is}) + \delta _{\ell s}\nonumber \\\le & {} \frac{1}{n_i}\mathbb {E}(f^2_{i\ell }f^2_{is}) + \delta _{\ell s} \le \frac{1}{n_i}\sigma _{4,i,\ell } \sigma _{4,i,s} + \delta _{\ell s}, \end{aligned}$$
(17)

where the last bound follows from the Cauchy–Schwartz inequality and the fact that \(\sigma ^2_{4,i,s}=\mathbb {E}(f^4_{is})\). Hence, using (20) and the fact that \(0\le a_{i,\ell ,n}\le 1\), we obtain the bound

$$\begin{aligned} \mathbb {E}(n_i\Vert \widehat{\varvec{\varGamma }}_V\Vert _{\mathcal {F}}^2)\le & {} \frac{n_i}{n^2}\sum _{\ell , s} \lambda _\ell \lambda _s \Delta _{i,s}^2 \Delta _{i,\ell }^2\, \mathbb {E}(U^2_{\ell s})\\\le & {} \frac{n_i}{n^2}\sum _{\ell , s} \lambda _\ell \lambda _s \,\Delta _{i,\ell }^2 \Delta _{i,s}^2\left( \frac{1}{n_i}\sigma _{4,i,\ell }\sigma _{4,i,s}+ \delta _{\ell s}\right) \\= & {} \frac{1}{n^2}\left( \sum _{\ell } \lambda _\ell \,{\Delta _{i,\ell }^2} {\sigma _{4,i,\ell }}\right) ^2+\frac{1}{n} \sum _{\ell } \lambda _\ell ^2\,\Delta _{i,\ell }^4\,. \end{aligned}$$

Therefore, from the fact that \( \sum _{\ell } \lambda _\ell ^2\,\Delta _{i,\ell }^4\le \left( \sum _{\ell } \lambda _\ell \,\Delta _{i,\ell }^2\right) ^2<\infty \) we get that \(\mathbb {E}({n_i}\Vert \widehat{\varvec{\varGamma }}_V\Vert _{\mathcal {F}}^2)\rightarrow 0\), concluding the proof of (16).

Finally, to derive (17) we perform the decomposition

$$\begin{aligned} \widetilde{\mathbf A}=\frac{1}{\sqrt{n}} \sum _{\ell , s} \lambda _\ell ^{\frac{1}{2}}\lambda _s^{\frac{1}{2}}a_{i,s,n} \Delta _{i,s} \, U_{\ell s}\,\left( \phi _\ell \;\otimes \phi _s+\phi _s\;\otimes \phi _\ell \right) =\widetilde{\mathbf A}_1+\widetilde{\mathbf A}_2 \end{aligned}$$

where \(U_{\ell s}=({1}/{n_i})\sum _{j=1}^{n_i}f_{i \ell j}\, \,f_{isj}\), as before. We will show that \(\sqrt{n_i}\left( \widetilde{\mathbf A}_j-\mathbb {E}(\widetilde{\mathbf A}_j)\right) \) \( \buildrel {p}\over \longrightarrow 0\), for \(j=1,2\) which entails that \(\sqrt{n_i}\left( \widetilde{\mathbf A}-\mathbb {E}(\widetilde{\mathbf A})\right) \buildrel {p}\over \longrightarrow 0\). We will only prove that \(\sqrt{n_i}\left( \widetilde{\mathbf A}_1-\mathbb {E}(\widetilde{\mathbf A}_1)\right) \buildrel {p}\over \longrightarrow 0\), since the other one follows similarly. From (20), we get that \({Var}(U_{\ell s})\le ({1}/{n_i})\sigma _{4,i,\ell } \sigma _{4,i,s} \) which together with the fact that \(0\le a_{i,\ell ,n}\le 1\) leads to

$$\begin{aligned} \mathbb {E}(n_i\Vert \widetilde{\mathbf A}_1-\mathbb {E}(\widetilde{\mathbf A}_1)\Vert _{\mathcal {F}}^2)= & {} \frac{n_i}{n} \sum _{\ell , s} \lambda _\ell \lambda _s a_{i,s,n}^2 \Delta _{i,s}^2 {Var}(U_{\ell s})\\\le & {} \frac{1}{n} \sum _{\ell , s} \lambda _\ell \lambda _s \Delta _{i,s}^2 \sigma _{4,i,\ell } \sigma _{4,i,s} \\= & {} \frac{1}{\sqrt{n}}\left( \sum _{\ell }\lambda _\ell \sigma _{4,i,\ell }\right) \left( \sum _{\ell }\lambda _\ell \sigma _{4,i,\ell }\Delta _{i,\ell }^2\right) \end{aligned}$$

so that \(\sqrt{n_i}\left( \widetilde{\mathbf A}_1-\mathbb {E}(\widetilde{\mathbf A}_1)\right) \buildrel {p}\over \longrightarrow 0\), as desired. Besides, using that \(\mathbb {E}(U_{\ell s})=\delta _{\ell s}\), we get that

$$\begin{aligned} \mathbb {E}(\sqrt{n_i}\, \widetilde{\mathbf A})= & {} \frac{2\, \sqrt{n_i}}{\sqrt{n}} \sum _{\ell } \lambda _\ell \, a_{i,\ell ,n} \Delta _{i,\ell } \; \phi _\ell \otimes \phi _\ell \rightarrow \tau _i^{\frac{1}{2}} \sum _{\ell =1}^\infty \lambda _\ell {\Delta _{i,\ell }}\phi _\ell \otimes \phi _\ell = \tau _i^{\frac{1}{2}} \varvec{\varDelta }_i \end{aligned}$$

where we have used that \(a_{i,\ell ,n} \rightarrow 1/2\), as \(n\rightarrow \infty \) and \( \sum _{\ell =1}^\infty \lambda _\ell |{\Delta _{i,\ell }}|<\infty \). This concludes the proof of (17). The proof of Proposition 2a) follows now combining (15) to (18). \(\square \)

Proof of Theorem 3. Recall that \(\widetilde{X}_n=(X_{1,1},\ldots ,X_{1,n_1},\dots , X_{k,1},\ldots ,X_{k,n_k})\). Let \(\widetilde{Z}_n=(Z_1,\ldots ,Z_{q_n})\) and \(\widetilde{Z}=\{Z_\ell \}_{\ell \,\ge 1}\) with \(Z_i\sim N(0,1)\) independent. Define \(\widehat{{\mathcal {U}}}_n(\widetilde{X}_n,\widetilde{Z}_n)=\sum _{\ell =1}^{q_n}\widehat{\theta }_\ell Z_\ell ^2\), \({{\mathcal {U}}}_n(\widetilde{Z}_n)=\sum _{\ell =1}^{q_n} \theta _\ell Z_\ell ^2\) and \({{\mathcal {U}}}(\widetilde{Z})=\sum _{\ell =1}^{\infty } \theta _\ell Z_\ell ^2\). It is worth noticing that \(\widehat{{\mathcal {U}}}_n\) has the same distribution as \({\mathcal {U}}^*_n\).

First notice that, for any \(\ell \), \(|\widehat{\theta }_\ell -\theta _\ell | \le \Vert \widehat{\varvec{\varUpsilon }}_{{w}}-\varvec{\varUpsilon }_{{w}}\Vert _{{\mathcal {G}}^{k-1}}\) (see, for instance, Kato (1966)), which implies that

$$\begin{aligned} \sum _{\ell =1}^{q_n}\vert \widehat{\theta }_\ell -\theta _\ell \vert \le \frac{q_n}{\sqrt{n}}\,\sqrt{n} \Vert \widehat{\varvec{\varUpsilon }}_{{w}}-\varvec{\varUpsilon }_{{w}}\Vert _{{\mathcal {G}}^{k-1}}\;. \end{aligned}$$
(18)

On the other hand, we have

$$\begin{aligned} \mathbb {E}\left[ |\widehat{{\mathcal {U}}}_n -{{\mathcal {U}}}|\vert \widetilde{X}_n\right] =\mathbb {E}\left[ |\widehat{{\mathcal {U}}}_n -{{\mathcal {U}}}_n+{{\mathcal {U}}}_n-{{\mathcal {U}}}|\;\vert \tilde{X}_n\right] \le \sum _{\ell =1}^{q_n}\vert \widehat{\theta }_\ell -\theta _\ell \vert +\sum _{\ell >q_n}\theta _\ell \end{aligned}$$

which together with (21), the fact that \(\sqrt{n} \Vert \widehat{\varvec{\varUpsilon }}_{{w}}-\varvec{\varUpsilon }_{{w}}\Vert =O_{\mathbb {P}}(1)\), \(q_n/\sqrt{n}\rightarrow 0\) and \(\sum _{\ell \,\ge 1} \theta _\ell <\infty \) implies that

$$\begin{aligned} \mathbb {E}\left[ |\widehat{{\mathcal {U}}}_n -{{\mathcal {U}}}|\;\vert \widetilde{X}_n \right] \buildrel {p}\over \longrightarrow 0\,. \end{aligned}$$
(19)

We also have the following inequalities

$$\begin{aligned} \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t\vert \widetilde{X}_n)= & {} \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t \cap |\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|<\epsilon \;\vert \widetilde{X}_n)+ \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t \cap |\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|>\epsilon \;\vert \widetilde{X}_n)\\\le & {} \mathbb {P}( {{\mathcal {U}}}\le t +\epsilon )+ \mathbb {P}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|>\epsilon \;\vert \widetilde{X}_n)\\\le & {} F_{{\mathcal {U}}}( t +\epsilon )+ \frac{1}{\epsilon }\mathbb {E}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|\;\vert \widetilde{X}_n)\le F_{{\mathcal {U}}}(t)+\Delta _\epsilon (t)+\frac{1}{\epsilon }\mathbb {E}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|\;\vert \widetilde{X}_n), \end{aligned}$$

where \(\Delta _\epsilon (t)=\sup _{\vert \delta \vert \le \epsilon }\vert F_{{\mathcal {U}}}( t+\delta ) -F_{{\mathcal {U}}}(t)\vert \). Besides,

$$\begin{aligned} \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t\;\vert \widetilde{X}_n)= & {} \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t \cap |\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|<\epsilon \;\vert \widetilde{X}_n)+ \mathbb {P}(\widehat{{\mathcal {U}}}_n\le t \cap |\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|>\epsilon \;\vert \widetilde{X}_n)\\\ge & {} \mathbb {P}( {{\mathcal {U}}}\le t-\epsilon \cap |\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|<\epsilon \;\vert \widetilde{X}_n)\\\ge & {} F_{{\mathcal {U}}}( t -\epsilon )- \frac{1}{\epsilon } \mathbb {E}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|\vert \widetilde{X}_n)\ge F_{{\mathcal {U}}}(t) -\Delta _\epsilon (t)-\frac{1}{\epsilon }\mathbb {E}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|\vert \widetilde{X}_n)\;. \end{aligned}$$

Therefore,

$$\begin{aligned} |\mathbb {P}(\widehat{{\mathcal {U}}}_n\le t\;\vert \widetilde{X}_n)-F_{{\mathcal {U}}}(t)|\le \Delta _\epsilon (t)+\frac{1}{\epsilon }\mathbb {E}(|\widehat{{\mathcal {U}}}_n-{{\mathcal {U}}}|\;\vert \widetilde{X}_n)\;. \end{aligned}$$

As we mentioned in Remark 1, \(F_{{\mathcal {U}}}\) is a continuous distribution function on \(\mathbb {R}\) and so uniformly continuous; hence, \(\lim _{\epsilon \rightarrow 0}\,\sup _{t\in \mathbb {R}} \;\Delta _\epsilon (t)=0\), which together with (22) implies that \(\rho _{{k}}( F_{{{\mathcal {U}}}^*_n\vert \widetilde{X}_n}, F_{{\mathcal {U}}})=\sup _{t}|\mathbb {P}(\widehat{{\mathcal {U}}}_n\le t\;\vert \tilde{X}_n)-F_{{\mathcal {U}}}(t)| \buildrel {p}\over \longrightarrow 0\). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boente, G., Rodriguez, D. & Sued, M. Testing equality between several populations covariance operators. Ann Inst Stat Math 70, 919–950 (2018). https://doi.org/10.1007/s10463-017-0613-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-017-0613-1

Keywords

Navigation