Skip to main content
Log in

Some binary start-up demonstration tests and associated inferential methods

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

During the past few decades, substantial research has been carried out on start-up demonstration tests. In this paper, we study the class of binary start-up demonstration tests under a general framework. Assuming that the outcomes of the start-up tests are described by a sequence of exchangeable random variables, we develop a general form for the exact waiting time distribution associated with the length of the test (i.e., number of start-ups required to decide on the acceptance or rejection of the equipment/unit under inspection). Approximations for the tail probabilities of this distribution are also proposed. Moreover, assuming that the probability of a successful start-up follows a beta distribution, we discuss several estimation methods for the parameters of the beta distribution, when several types of observed data have been collected from a series of start-up tests. Finally, the performance of these estimation methods and the accuracy of the suggested approximations for the tail probabilities are illustrated through numerical experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aki, S., Kuboki, H., Hirano, K. (1984). On discrete distributions of order \(k\). Annals of the Institute of Statistical Mathematics, 36, 431–440.

    Google Scholar 

  • Antzoulakos, D. L., Koutras, M. V., Rakitzis, A. C. (2009). Start-up demonstration tests based on run and scan statistics. Journal of Quality Technology, 41, 1–12.

    Google Scholar 

  • Aston, J. A. D., Martin, D. E. K. (2005). Waiting time distributions of competing patterns in higher-order Markovian sequences. Journal of Applied Probability, 42, 977–988.

    Google Scholar 

  • Balakrishnan, N., Chan, P. S. (2000). Start-up demonstration tests with rejection of units upon observing \(d\) failures. Annals of the Institute of Statistical Mathematics, 52, 184–196.

    Google Scholar 

  • Balakrishnan, N., Koutras, M. V. (2002). Runs and Scans with Applications. New York: Wiley.

  • Balakrishnan, N., Balasubramanian, K., Viveros, R. (1995). Start-up demonstration tests under correlation and corrective action. Naval Research Logistics, 42, 1271–1276.

    Google Scholar 

  • Balakrishnan, N., Mohanty, S. G., Aki, S. (1997). Start-up demonstration tests under Markov dependence model with corrective actions. Annals of the Institute of Statistical Mathematics, 49, 155–169.

    Google Scholar 

  • Barlow, R., Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. New York: Holt, Reinhart and Winston.

  • Chan, P. S., Ng, H. K. T., Balakrishnan, N. (2008). Statistical inference for start-up demonstration tests with rejection of units upon observing \(d\) failures. Journal of Applied Statistics, 35, 867–878.

    Google Scholar 

  • Chatfield, C., Goodhardt, G. J. (1970). The beta-binomial model for consumer purchasing behavior. Journal of the Royal Statistical Society, Series C, 19, 240–250.

    Google Scholar 

  • de Finetti, B. (1931). Funcione caratteristica di un fenomeno aleatorio. Atti della Reale Accademia Nazionale dei Lincii, 4, 251–299.

    Google Scholar 

  • Eryilmaz, S. (2010). Start-up demonstration tests under Markov dependence. Pakistan Journal of Statistics, 26, 637–647.

    Google Scholar 

  • Eryilmaz, S., Chakraborti, S. (2008). On start-up demonstration tests under exchangeability. IEEE Transactions on Reliability, 57, 627–632.

    Google Scholar 

  • Everson, P. J., Bradlow, E. T. (2002). Bayesian inference for the beta-binomial distribution via polynomial expansions. Journal of Computational and Graphical Statistics, 11, 202–207.

    Google Scholar 

  • Feller, W. (1968). An Introduction to Probability Theory and its Applications (3rd ed., Vol. I). New York: Wiley.

  • Gera, A. E. (2004). Combined \(k\)-out-of-\(n\):\(G\), and consecutive \(k_C\)-out-of-\(n\):\(G\) systems. IEEE Transactions on Reliability, 53, 523–531.

  • Gera, A. E. (2010). A new start-up demonstration test. IEEE Transactions on Reliability, 59, 128–131.

    Google Scholar 

  • Gera, A. E. (2011). A general model for start-up demonstration tests. IEEE Transactions on Reliability, 60, 295–304.

    Google Scholar 

  • Govindaraju, K., Lai, C. D. (1999). Design of multiple run sampling plan. Communications in Statistics - Simulation and Computation, 28, 1–11.

    Google Scholar 

  • Griffiths, D. A. (1973). Maximum likelihood estimation for the beta binomial distribution and an application to the household distribution of the total number of cases of a disease. Biometrics, 29, 637–648.

    Google Scholar 

  • Hahn, G. J., Gage, J. B. (1983). Evaluation of a start-up demonstration test. Journal of Quality Technology, 15, 103–106.

    Google Scholar 

  • Jackman, S. (2009). Bayesian Analysis for the Social Sciences. New Jersey: Wiley.

  • Johnson, N. L., Kotz, S., Kemp, A. W. (1992). Univariate Discrete Distributions (2nd ed.). New York: Wiley.

  • Kleinman, J. C. (1973). Proportions with extraneous variance: single and independent samples. Journal of the American Statistical Association, 68, 46–54.

    Google Scholar 

  • Koutras, M. V., Balakrishnan, N. (1999). A start-up demonstration test using a simple scan-based statistic. In J. Glaz, N. Balakrishnan (Eds.), Scan Statistics and Applications (pp. 251–267). Boston: Birkhauser.

  • Lee, J. C., Lio, Y. L. (1999). A note on Bayesian estimation and prediction for the beta-binomial model. Journal of Statistical Computation and Simulation, 63, 73–91.

    Google Scholar 

  • Lee, J. C., Sabavala, D. J. (1987). Bayesian estimation and prediction for the beta-binomial model. Journal of Business and Economic Statistics, 5, 357–367.

    Google Scholar 

  • Martin, D. E. K. (2004). Markovian start-up demonstration tests with rejection of units upon observing \(d\) failures. European Journal of Operational Research, 155, 474–486.

    Google Scholar 

  • Martin, D. E. K. (2008). Application of auxiliary Markov chains to start-up demonstration tests. European Journal of Operational Research, 184, 574–582.

    Google Scholar 

  • Philippou, A. N., Muwafi, A. A. (1982). Waiting for the \(k\)-th consecutive success and the fibonacci sequence of order \(k\). The Fibonacci Quarterly, 20, 28–32.

  • Scollnik, D. P. M. (2010). Bayesian statistical inference for start-up demonstration tests with rejection of units upon observing \(d\) failures. Journal of Applied Statistics, 37, 1113–1121.

    Google Scholar 

  • Scollnik, D. P. M. (2011). Bayesian inference for a class of start-up demonstration tests with rejection of units upon the observation of \(d\) failures. Communications in Statistics-Theory and Methods, 40, 2528–2538.

    Google Scholar 

  • Shenton, L. R. (1950). Maximum likelihood and the efficiency of the method of moments. Biometrika, 37, 111–116.

    Google Scholar 

  • Skellam, J. G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. Journal of the Royal Statistical Society, Series B, 10, 257–261.

    Google Scholar 

  • Smith, M. L., Griffith, W. S. (2005). Start-up demonstration tests based on consecutive successes and total failures. Journal of Quality Technology, 37, 186–198.

    Google Scholar 

  • Smith, M. L., Griffith, W. S. (2008). The analysis and comparison of start-up demonstration tests. European Journal of Operational Research, 186, 1029–1045.

    Google Scholar 

  • Smith, M. L., Griffith, W. S. (2011). Multistate start-up demonstration tests. International Journal of Reliability, Quality and Safety Engineering, 18, 99–117.

    Google Scholar 

  • Tamura, R. N., Young, S. S. (1986). The incorporation of historical control information in tests of proportions: Simulation study of Tarone’s procedure. Biometrics, 42, 343–349.

  • Tamura, R. N., Young, S. S. (1987). A stabilized moment estimator for the beta-binomial distribution. Biometrics, 43, 813–824.

    Google Scholar 

  • Tripathi, R. C., Gupta, R. C., Gurland, J. (1994). Estimation of parameters in the beta binomial model. Annals of the Institute of Statistical Mathematics, 46, 317–331.

    Google Scholar 

  • Vance, L. C., McDonald, G. C. (1979). A class of multiple run sampling plans. Technometrics, 21, 141–146.

    Google Scholar 

  • Viveros, R., Balakrishnan, N. (1993). Statistical inference from start-up demonstration test data. Journal of Quality Technology, 25, 119–130.

    Google Scholar 

  • Wilcox, R. R. (1979). Estimating the parameters of the beta binomial distribution. Educational and Psychological Measurement, 39, 527–535.

    Google Scholar 

  • Williams, D. A. (1975). The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics, 31, 949–952.

    Google Scholar 

  • Yalcin, F., Eryilmaz, S. (2012). Start-up demonstration test based on total successes and total failures with dependent start-ups. IEEE Transactions on Reliability, 61, 227–230.

    Google Scholar 

  • Yamamoto, E., Yanagimoto, T. (1992). Moment estimators for the beta-binomial distribution. Journal of Applied Statistics, 19, 273–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Milienos.

Appendices

Appendix A

Before proceeding to the partial derivatives of the log-likelihood function from (11), it is necessary to mention that

$$\begin{aligned} \frac{\partial B(x,y)}{\partial x}=B(x,y)(\Psi (x)\!-\!\Psi (x+y)) \text { and } \frac{\partial B(x,y)}{\partial y}\!=\!B(x,y)(\Psi (y)-\Psi (x+y)), \end{aligned}$$

where \(\Psi (x)=\Gamma '(x)/\Gamma (x)\) is the digamma function. The following recurrence relation is also very useful in the sequel:

$$\begin{aligned} \Psi (x + 1) = \Psi (x) + \frac{1}{x}, \text { for every } x. \end{aligned}$$

Thus, the partial derivatives of the log-likelihood function for Case C (see (11)) are as follows:

$$\begin{aligned}&\frac{\partial l(\alpha ,\beta )}{\partial \alpha }=-m (\Psi (\alpha )-\Psi (\alpha +\beta ))\\&\qquad +\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta +n_i-k)(\Psi (\alpha +k)-\Psi (\alpha +\beta +n_i))}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha +t,\beta +n_i-t)}\\&\quad =-m (\Psi (\alpha )-\Psi (\alpha +\beta ))-\sum _{i=1}^{m} \Psi (\alpha +\beta +n_i)\nonumber \\&\qquad +\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta +n_i-k)\Psi (\alpha +k)}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha +t,\beta +n_i-t)}\\&\quad =-m (\Psi (\alpha )-\Psi (\alpha +\beta ))-\sum \limits _{i=1}^{m}\left( \Psi (\alpha +\beta )+\sum \limits _{r=1}^{n_i}\frac{1}{\alpha +\beta +n_i-r}\right) \\&\qquad +\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta +n_i-k)(\Psi (\alpha )+\sum _{r=0}^{k-1}\frac{1}{\alpha +r})}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha +t,\beta +n_i-t)}\\&\quad =-m (\Psi (\alpha )-\Psi (\alpha +\beta ))-m\Psi (\alpha +\beta )-\sum \limits _{i=1}^{m}\sum \limits _{r=1}^{n_i}\frac{1}{\alpha +\beta +n_i-r}\\&\qquad \!+\!\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\Psi (\alpha )\!+\!\sum _{k=0}^{n_i}v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\sum _{r=0}^{k-1}\frac{1}{\alpha \!+\!r}}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha \!+\!t,\beta \!+\!n_i-t)}\\&\quad =-\sum \limits _{i=1}^{m}\sum \limits _{r=1}^{n_i}\frac{1}{\alpha +\beta +n_i-r}+\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta +n_i-k)\sum _{r=0}^{k-1}\frac{1}{\alpha +r}}{\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}\\&\quad =-\sum \limits _{i=1}^{m}\sum \limits _{r=0}^{n_i-1}\frac{1}{\alpha +\beta +r}+\sum \limits _{i=1}^{m}\sum \limits _{k=0}^{n_i}\sum \limits _{r=0}^{k-1}\frac{\pi _{ik}(\alpha ,\beta )}{\alpha +r} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial l(\alpha ,\beta )}{\partial \beta }&= -m (\Psi (\beta )-\Psi (\alpha +\beta ))\\&\quad \!+\!\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta \!+\!n_i-k)(\Psi (\beta \!+\!n_i-k)\!-\!\Psi (\alpha \!+\!\beta \!+\!n_i))}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha \!+\!t,\beta \!+\!n_i-t)}\\&= -m (\Psi (\beta )-\Psi (\alpha +\beta ))-\sum _{i=1}^{m} \Psi (\alpha +\beta +n_i)\\&\quad +\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha +k,\beta +n_i-k)\Psi (\beta +n_i-k)}{\sum _{t=0}^{n_i}v_{n_it} B(\alpha +t,\beta +n_i-t)}\\&= \!-\!\sum \limits _{i=1}^{m}\sum \limits _{r=0}^{n_i-1}\frac{1}{\alpha \!+\!\beta \!+\!r}\!+\!\sum \limits _{i=1}^{m} \frac{\sum _{k=0}^{n_i}v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\sum _{r=0}^{n_i-k-1}\frac{1}{\beta \!+\!r}}{\sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)}\\&= -\sum \limits _{i=1}^{m}\sum \limits _{r=0}^{n_i-1}\frac{1}{\alpha +\beta +r}+\sum \limits _{i=1}^{m}\sum \limits _{k=0}^{n_i}\sum \limits _{r=0}^{n_i-k-1}\frac{\pi _{ik}(\alpha ,\beta )}{\beta +r}. \end{aligned}$$

Appendix B

The partial derivatives of \(\pi _{ik}(\alpha ,\beta )\) are as follows:

$$\begin{aligned}&\frac{\partial \pi _{ik}(\alpha ,\beta )}{\partial \alpha }=\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)}{\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}\\&\quad =\frac{v_{n_ik}B'(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\qquad -\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B'(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\quad =\frac{v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\left( \Psi (\alpha \!+\!k)\!-\!\Psi (\alpha \!+\!\beta \!+\!n_i)\right) \sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)\right) ^2}\\&\qquad - \frac{v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i\!-\!k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)\left( \Psi (\alpha \!+\!t)-\Psi (\alpha \!+\!\beta \!+\!n_i)\right) }{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)\right) ^2}\\&\quad =\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\Psi (\alpha +k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\qquad - \frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\Psi (\alpha +t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\quad =\Psi (\alpha +k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\pi _{it}(\alpha ,\beta )\Psi (\alpha +t)\\&\quad =\Psi (\alpha +k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\pi _{it}(\alpha ,\beta )\left( \Psi (\alpha )+\sum \limits _{j=0}^{t-1}\frac{1}{\alpha +j}\right) \\&\quad =\Psi (\alpha +k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\left( \Psi (\alpha )+\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{t-1}\frac{\pi _{it}(\alpha ,\beta )}{\alpha +j}\right) \\&\quad =\Psi (\alpha +k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\Psi (\alpha )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{t-1}\frac{\pi _{it}(\alpha ,\beta )}{\alpha +j}\\&\quad =\pi _{ik}(\alpha ,\beta ) \left[ \sum \limits _{j=0}^{k-1}\frac{1}{\alpha +j}-\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{t-1}\frac{\pi _{it}(\alpha ,\beta )}{\alpha +j}\right] \end{aligned}$$

and

$$\begin{aligned}&\frac{\partial \pi _{ik}(\alpha ,\beta )}{\partial \beta }=\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)}{\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}\\&\quad =\frac{v_{n_ik}B'(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\qquad -\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B'(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\quad =\frac{v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\left( \Psi (\beta \!+\!n_i-k)\!-\!\Psi (\alpha \!+\!\beta \!+\!n_i)\right) \sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\qquad \!-\frac{v_{n_ik}B(\alpha \!+\!k,\beta \!+\!n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha \!+\!t,\beta \!+\!n_i-t)\left( \Psi (\beta \!+\!n_i-t)\!-\!\Psi (\alpha \!+\!\beta \!+\!n_i)\right) }{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\quad =\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\Psi (\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\qquad -\frac{v_{n_ik}B(\alpha +k,\beta +n_i-k)\sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\Psi (\beta +n_i-t)}{\left( \sum _{t=0}^{n_i}v_{n_it}B(\alpha +t,\beta +n_i-t)\right) ^2}\\&\quad =\Psi (\beta +n_i-k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\pi _{it}(\alpha ,\beta )\Psi (\beta +n_i-t)\\&\quad =\Psi (\beta +n_i-k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\pi _{it}(\alpha ,\beta )\left( \Psi (\beta )+\sum \limits _{j=0}^{n_i-t-1}\frac{1}{\beta +j}\right) \\&\quad =\Psi (\beta +n_i-k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\left( \Psi (\beta )+\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{n_i-t-1}\frac{\pi _{it}(\alpha ,\beta )}{\beta +j}\right) \\&\quad =\Psi (\beta +n_i-k)\pi _{ik}(\alpha ,\beta )-\pi _{ik}(\alpha ,\beta )\Psi (\beta )-\pi _{ik}(\alpha ,\beta )\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{n_i-t-1}\frac{\pi _{it}(\alpha ,\beta )}{\beta +j}\\&\quad =\pi _{ik}(\alpha ,\beta ) \left[ \sum \limits _{j=0}^{n_i-k-1}\frac{1}{\beta +j}-\sum \limits _{t=0}^{n_i}\sum \limits _{j=0}^{n_i-t-1}\frac{\pi _{it}(\alpha ,\beta )}{\beta +j}\right] . \end{aligned}$$

About this article

Cite this article

Balakrishnan, N., Koutras, M.V. & Milienos, F.S. Some binary start-up demonstration tests and associated inferential methods. Ann Inst Stat Math 66, 759–787 (2014). https://doi.org/10.1007/s10463-013-0424-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-013-0424-y

Keywords

Navigation