Skip to main content
Log in

Abstract

A k × n array with entries from a q-letter alphabet is called a t-covering array if each t × n submatrix contains amongst its columns each one of the q t different words of length t that can be produced by the q letters. In the present article we use a probabilistic approach based on an appropriate Markov chain embedding technique, to study a t-covering problem where, instead of looking at all possible t × n submatrices, we consider only submatrices of dimension t × n with its rows being consecutive rows of the original k × n array. Moreover, an exact formula is established for the probability distribution function of the random variable, which enumerates the number of deficient submatrices (i.e., submatrices with at least one missing word, amongst their columns), in the case of a k × n binary matrix (q = 2) obtained by realizing kn Bernoulli variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki S. (1992) Waiting time problems for a sequence of discrete random variables. Annals of the Institute of Statistical Mathematics 44: 363–378

    Article  MATH  MathSciNet  Google Scholar 

  • Aki S., Hirano K. (1989) Estimation of parameters in the discrete-distributions of order k. Annals of the Institute of Statistical Mathematics 41: 47–61

    Article  MATH  MathSciNet  Google Scholar 

  • Aki S., Hirano K. (1995) Joint distributions of numbers of success-runs and failures until the first consecutive k successes. Annals of the Institute of Statistical Mathematics 47: 225–235

    Article  MATH  MathSciNet  Google Scholar 

  • Aki S., Hirano K. (2004) Waiting time problems for a two-dimensional pattern. Annals of the Institute of Statistical Mathematics 56: 169–182

    Article  MATH  MathSciNet  Google Scholar 

  • Balakrishnan N., Koutras M.V. (2002) Runs, scans and applications. Wiley, New York

    Google Scholar 

  • Carey, P. A., Godbole, A. P. (2008). Partial covering arrays and a generalized Erdös-Ko-Rado property (under revision).

  • Charalambides Ch.A. (2002) Enumerative combinatorics. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Colbourn C.J. (2004) Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58: 121–167

    Google Scholar 

  • Dalal S.R., Mallows C.L. (1998) Factor-covering designs for testing software. Technometrics 40: 234–243

    Article  Google Scholar 

  • Fu J.C., Koutras M.V. (1994) Distribution theory of runs: A Markov chain approach. Journal of the American Statistical Association 89: 1050–1058

    Article  MATH  MathSciNet  Google Scholar 

  • Fu J.C., Lou W.Y.W. (2003) Distribution theory of runs and patterns and its applications: A finite markov chain imbedding approach. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Godbole A.P., Skipper D.E., Sunley R.A. (1996) t-covering arrays: Upper bounds and Poisson approximations. Combinatorics, Probability and Computing 5: 105–118

    Article  MATH  MathSciNet  Google Scholar 

  • Hartman A. (2006) Software and hardware testing using combinatorial covering suites. In: Golumbic M.C., Hartman A. (eds) Interdisciplinary applications of graph theory, combinatorics and algorithms. Springer, Berlin, pp 237–266

    Google Scholar 

  • Hedayat A.S., Sloane N.J.A., Stufken J. (1999) Orthogonal arrays. Springer, New York

    MATH  Google Scholar 

  • Katona G. (1973) Two applications (for search theory and truth functions) of Sperner type theorems. Periodica Mathematica Hungarica 3: 19–26

    Article  MATH  MathSciNet  Google Scholar 

  • Kleitman D., Spencer J. (1973) Families of k-independent sets. Discrete Mathematics 6: 255–262

    Article  MATH  MathSciNet  Google Scholar 

  • Koutras M.V. (2003) Applications of Markov chains to the distribution theory of runs and patterns. In: Shanbhag D.N., Rao C.R. (eds) Handbook of statistics: Vol. 21. Stochastic processe, modeling and simulation. Elsevier, Amsterdam

    Google Scholar 

  • Koutras M.V., Alexandrou V.A. (1995) Runs, scans and urn model distributions: A unified Markov chain approach. Annals of the Institute of Statistical Mathematics 47: 743–766

    Article  MATH  MathSciNet  Google Scholar 

  • Renyi A. (1971) Foundations of probability. Wiley, New York

    Google Scholar 

  • Sloane N.J.A. (1993) Covering arrays and intersecting codes. Journal of Combinatorial Designs 1: 51–63

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Koutras.

About this article

Cite this article

Godbole, A.P., Koutras, M.V. & Milienos, F.S. Binary consecutive covering arrays. Ann Inst Stat Math 63, 559–584 (2011). https://doi.org/10.1007/s10463-009-0240-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-009-0240-6

Keywords

Navigation