Skip to main content
Log in

Covering arrays from m-sequences and character sums

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A covering array of strength t on v symbols is an array with the property that, for every t-set of column vectors, every one of the \(v^t\) possible t-tuples of symbols appears as a row at least once in the sub-array defined by these column vectors. Arrays constructed using m-sequences over a finite field possess many combinatorial properties and have been used to construct various combinatorial objects; see the recent survey Moura et al. (Des Codes Cryptogr 78(1):197–219, 2016). In this paper we construct covering arrays whose elements are the remainder of the division by some integer of the discrete logarithm applied to selected m-sequence elements. Inspired by the work of Colbourn (Des Codes Cryptogr 55(2–3):201–219, 2010), we prove our results by connecting the covering array property to a character sum, and we evaluate this sum by taking advantage of the balanced way in which the m-sequence elements are distributed. Our results include new infinite families of covering arrays of arbitrary strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alderson T.L., Bruen A.: Maximal AMDS codes. Appl. Algebra Eng. Commun. Comput. 19(2), 87–98 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (2016).

    MATH  Google Scholar 

  3. Bose R.C.: Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166 (1947).

    MathSciNet  MATH  Google Scholar 

  4. Bryce R.C., Colbourn C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19(1), 37–53 (2009).

    Article  Google Scholar 

  5. Cohen D.M., Siddhartha R.D., Parelius J., Patton G.C.: The combinatorial design approach to automatic test generation. IEEE Softw. 13(5), 83 (1996).

    Article  Google Scholar 

  6. Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004).

    MATH  Google Scholar 

  7. Colbourn C.J.: Covering arrays from cyclotomy. Des. Codes Cryptogr. 55(2–3), 201–219 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. Colbourn C.J., Dinitz J.H.: CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2010).

    MATH  Google Scholar 

  9. Colbourn C.J.: Covering array tables. www.public.asu.edu/ccolbou/src/tabby/catable.html.

  10. De Boer M.A.: Almost MDS codes. Des. Codes Cryptogr. 9(2), 143–155 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. Dewar M., Moura L., Panario D., Stevens B., Wang Q.: Division of trinomials by pentanomials and orthogonal arrays. Des. Codes Cryptogr. 45(1), 1–17 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebert G.L.: Partitioning projective geometries into caps. Can. J. Math. 37(6), 1163–1175 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  13. Giulietti, M.: On near-MDS elliptic codes. arXiv:math/0211107 (2002)

  14. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).

    Book  MATH  Google Scholar 

  15. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer, New York (2012).

    MATH  Google Scholar 

  16. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Finite Geometries, pp. 201–246. Springer, New York (2001).

  17. Katona G.O.H.: Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hung. 3(1–2), 19–26 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim R., Song O.H., Ri M.H.: Division of tetranomials by type II pentanomials and orthogonal arrays. Vietnam J. Math. (2016). doi:10.1007/s10013-015-0182-7.

  19. Kleitman D.J., Spencer J.: Families of \(k\)-independent sets. Discret. Math. 6(3), 255–262 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuhn D.R., Wallace D.R., Gallo Jr. A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004).

    Article  Google Scholar 

  21. Lidl R., Niederreiter H.: Finite Fields, vol. 20. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  22. Moura L., Mullen G.L., Panario D.: Finite field constructions of combinatorial arrays. Des. Codes Cryptogr. 78(1), 197–219 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. Mullen G.L., Panario D.: Handbook of Finite Fields. CRC Press, Boca Raton (2013).

    Book  MATH  Google Scholar 

  24. Munemasa A.: Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl. 4(3), 252–260 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. Panario D., Sosnovski O., Stevens B., Wang Q.: Divisibility of polynomials over finite fields and combinatorial applications. Des. Codes Cryptogr. 63(3), 425–445 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. Qvist B.: Some remarks concerning curves of the second degree in a finite plane. Suomalainen Tiedeakatemia 134, 1–27 (1952).

    MathSciNet  MATH  Google Scholar 

  27. Raaphorst S., Moura L., Stevens B.: A construction for strength-3 covering arrays from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949–968 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  28. Rényi A.: Foundations of Probability. Wiley, New York (1971).

    MATH  Google Scholar 

  29. Stein W.A., Abbott T., Abshoff M.: Sage mathematics software (2011).

  30. Tsfasman M., Vlădut S.G.: Algebraic-Geometric Codes. Kluwer, Dordrecht (1991).

    Book  MATH  Google Scholar 

  31. Tzanakis G., Moura L., Panario D., Stevens B.: Constructing new covering arrays from LFSR sequences over finite fields. Discret. Math. 339(3), 1158–1171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the two anonymous referees whose comments considerably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Tzanakis.

Additional information

Communicated by C. J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzanakis, G., Moura, L., Panario, D. et al. Covering arrays from m-sequences and character sums. Des. Codes Cryptogr. 85, 437–456 (2017). https://doi.org/10.1007/s10623-016-0316-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0316-2

Keywords

Mathematics Subject Classification

Navigation