Skip to main content
Log in

Optimal tuning parameter estimation in maximum penalized likelihood method

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In maximum penalized or regularized methods, it is important to select a tuning parameter appropriately. This paper proposes a direct plug-in method for tuning parameter selection. The tuning parameters selected using a generalized information criterion (Konishi and Kitagawa, Biometrika, 83, 875–890, 1996) and cross-validation (Stone, Journal of the Royal Statistical Society, Series B, 58, 267–288, 1974) are shown to be asymptotically equivalent to those selected using the proposed method, from the perspective of estimation of an optimal tuning parameter. Because of its directness, the proposed method is superior to the two selection methods mentioned above in terms of computational cost. Some numerical examples which contain the penalized spline generalized linear model regressions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723

    Article  MATH  MathSciNet  Google Scholar 

  • DiCiccio T.J. and Efron B. (1992). More accurate confidence intervals in exponential families. Biometrika 79: 231–245

    Article  MATH  MathSciNet  Google Scholar 

  • DiCiccio T.J. and Efron B. (1996). Bootstrap confidence intervals (with discussion). Statistical Science 11: 189–228

    Article  MATH  MathSciNet  Google Scholar 

  • DiCiccio T.J. and Monti A.C. (2001). Accurate confidence limits for scalar functions of vector M-estimands. Biometrika 89: 437–451

    Article  MathSciNet  Google Scholar 

  • Fan J. and Li R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96: 1348–1360

    Article  MATH  MathSciNet  Google Scholar 

  • Gilbert. P. numDeriv: Accurate Numerical Derivatives. R package Version 2006.4-1. http://www.bank-banque-canada.ca/pgilbert.

  • Good I.J. and Gaskins R.A. (1971). Nonparametric roughness penalties for probability densities. Biometrika 58: 255–277

    Article  MATH  MathSciNet  Google Scholar 

  • Green P.J. and Silverman B.W. (1994). Nonparametric regression and generalized linear models, a roughness penalty approach. Chapman and Hall, London

    MATH  Google Scholar 

  • Imoto S. and Konishi S. (2003). Selection of smoothing parameters in B-spline nonparametric regression models using information criteria. Annals of the Institute of Statistical Mathematics 55: 671–687

    Article  MATH  MathSciNet  Google Scholar 

  • Konishi S. and Kitagawa G. (1996). Generalised information criteria in model selection. Biometrika 83: 875–890

    Article  MATH  MathSciNet  Google Scholar 

  • Konishi S. and Kitagawa G. (2003). Asymptotic theory for information criteria in model selection – Functional approach. Journal of Statistical Planning and Inference 114: 45–61

    Article  MATH  MathSciNet  Google Scholar 

  • Konishi S., Ando T. and Imoto S. (2004). Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika 91: 27–43

    Article  MATH  MathSciNet  Google Scholar 

  • Nonaka Y. and Konishi S. (2005). Nonlinear regression modeling using regularized local likelihood method. Annals of the Institute of Statistical Mathematics 57: 617–635

    Article  MATH  MathSciNet  Google Scholar 

  • Shimodaira H. (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 90: 227–244

    Article  MATH  MathSciNet  Google Scholar 

  • Stone M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, Series B 36: 111–147

    MATH  Google Scholar 

  • Takeuchi K. (1976). Distribution of informational statistics and a criterion of model fitting. Suri-Kagaku (Mathematical Sciences) 153: 12–18 (in Japanese)

    Google Scholar 

  • Tibshirani R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58: 267–288

    MATH  MathSciNet  Google Scholar 

  • Wand M.P. (1999). On the optimal amount of smoothing in penalised spline regression. Biometrika 86: 936–940

    Article  MATH  MathSciNet  Google Scholar 

  • White H. (1982). Maximum likelihood estimation of misspecified models. Econometrika 50: 1–26

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Ueki.

About this article

Cite this article

Ueki, M., Fueda, K. Optimal tuning parameter estimation in maximum penalized likelihood method. Ann Inst Stat Math 62, 413–438 (2010). https://doi.org/10.1007/s10463-008-0186-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-008-0186-0

Keywords

Navigation