Skip to main content
Log in

Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The effects of the interaction between arbuscular mycorrhizal and phosphate-solubilizing (P-solubilizing) fungi on phosphorous availability, acid phosphatase activity, and the growth and development of coffee plants (Coffea arabica L.) var. garnica were evaluated. The experiment was performed under controlled conditions and was based on a randomized factorial design with two factors. Coffee plants were inoculated with a consortium of arbuscular mycorrhizal fungi (CAMF), two strains of P-solubilizing fungi (PSF) (Aspergillus niger [An] and Penicillium brevicompactum [Pb]), the possible combinations of the latter fungi, and an uninoculated control. After 8 months, the results demonstrated the effectiveness of mycorrhizal and P-solubilizing fungal inoculations in increasing available soil phosphorous. The greatest concentration of available soil phosphorous was detected in the consortium of P-solubilizing fungi (CPSF) treatment at 3.8 mg/kg. The total foliar phosphorous concentration of plants was higher in the CAMF, An + CAMF, CPSF + CAMF, Pb + CAMF, and CPSF treatments in comparison to the control treatment. The growth of coffee plants was also favored by the consortium treatments (P-solubilizing fungi and arbuscular mycorrhizal fungi). The acid phosphatase activity in the rhizosphere significantly increased under the CPSF treatment and also increased in the roots of coffee plants under the An, An + CAMF, and CPSF + CAMF treatments. Given the importance of fungal groups for processes of phosphorous transformation and absorption in coffee plants, it is imperative to continue the search for native fungal strains with high potential for use as biofertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano AML, Hernández RC, Figueroa MS, Jarquin Gálvez R (2011) Actividad biológica y enzimas de estrés en plántulas de café Coffea arabica L. In: Aguilar JCE, Galdámez J, Bahena JF, Vázquez GM, López BW, Pinto RR (eds) Agricultura Sostenible Vol. V. Sociedad Mexicana de Agricultura Sostenible A.C., Mexico, pp 15–20

  • Agnihotri VP (1970) Solubilization of insoluble phosphates by some soil fungi isolated from nursery seedbeds. Can J Microbiol 16(9):877–880

    Article  CAS  PubMed  Google Scholar 

  • Aguirre MJF, Moroyoqui ODM, Mendoza LA, Cadena IJ, Avendaño ACH, Aguirre CJF (2011) Hongo endomicorrízico y bacteria fijadora de nitrógeno inoculadas a Coffea arabica en vivero. Agron Mesoam 22(1):71–80

    Article  Google Scholar 

  • Arias RM, Heredia G (2014) Fungal diversity in coffee plantation systems and in a tropical montane cloud forest in Veracruz, Mexico. Agrofor Syst 88(5):921–933

    Article  Google Scholar 

  • Arias RM, Heredia G, Sosa V, Fuentes-Ramírez LE (2012) Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 85(1):179–193

    Article  Google Scholar 

  • Babu A, Reddy M (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219(1–4):3–10

    Article  CAS  Google Scholar 

  • Barea JM, Ferrol N, Azcón C, Azcón R (2008) Mycorrhizal symbioses. In: White PJ, Hammond JP (eds) The ecophysiology of plant–phosphorus interactions. Springer, Dordrecht, pp 143–163

    Chapter  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soil. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Carvajal JF (1984) Cafeto—cultivo y fertilización. Instituto Internacional de la Potassa, Berna

    Google Scholar 

  • Castillo C, Morales A, Rubio R, Barea JM, Borie F (2013) Interactions between native arbuscular mycorrhizal fungi and phosphate solubilizing fungi and thier effect to improve plant development and fruit production by Capsicum annuum L. Afr J Microbiol Res 7(26):3331–3340

    Article  Google Scholar 

  • Collados C (2006) Impacto de Azospirillum modificado genéticamente sobre la diversidad y actividad de los hongos de la micorriza arbuscular en la rizósfera de trigo y maíz. Dissertation, Universidad de Granada

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    Article  CAS  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Annu N Y Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  • Dighton J (1991) Acquisition of nutrients from organic sources by mycorrhizal autotrophics plants. Experientia 47:362–369

    Article  Google Scholar 

  • Domínguez VA (1997) Tratado de fertilización. Mundi-Prensa, Madrid

    Google Scholar 

  • Escalona MA (2002) Interacción de plantas de café fertilizadas con fósforo e inoculadas con hongos micorrízico arbusculares y Phoma costarricencis Echandi. Dissertation, Universidad de Colima

  • Escamilla PE, Ruiz RO, Zamarripa CA, González HVA (2015) Calidad en variedades de café orgánico en tres regiones de México. Rev Geog Agric 55:45

    Google Scholar 

  • Fira (2016) Panorama Agroalimentario. Café 2016. Dirección de Investigación y Evaluación Económica y Sectorial

  • García-Franco J, Toledo T (2008) Epífitas vasculares: bromelias y orquídeas. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 69–77

  • González ME, Rodriguez Y (2004) Respuesta de plantas de Coffea canephora a la inoculación con hongos micorrizógenos arbusculares durante la fase de aclimatización. Cultiv Trop 25(1):13–16

    Google Scholar 

  • González-Romero A, Murrieta-Galindo R (2008) Anfibios y Reptiles. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 135–143

  • Grimal JY, Frossard E, Morel JL (2001) Maize root mucilage decreased adsorption of phosphate on goethite. Biol Fertilil Soils 33:226–230

    Article  CAS  Google Scholar 

  • Gryndler M, Vosatka M, Hrselova H, Chvatalova I, Jansa J (2002) Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Appl Soil Ecol 19(3):279–288

    Article  Google Scholar 

  • Heredia G, Arias R (2008) Hongos saprobios y endomicorrizógenos en suelos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 193–203

  • Jeffries P, Barea JM (2001) Arbuscular Mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota, vol IX. Fungal associations. Springer, Berlin, pp 95–113

    Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1988) Phosphatase activity in corn and soybean roots: conditions for assay and effects of metals. Plant Soil 107:39–47

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A (2006) Influence of composite inoculations of phosphate solubilizing organisms and an arbuscular mycorrhizal fungus on yield, grain protein and phosphorus and nitrogen uptake by greengram. Arch Agron Soil Sci 52(5):579–590

    Article  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, Minnesota, pp 37–45

    Google Scholar 

  • Kroehler C (1988) The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 66:750–756

    Article  CAS  Google Scholar 

  • Kropp BR (1990) Variation in acid phosphatase activity among progeny from controlled crosses in the ectomycorrhizal fungus Lacaria bicolor. Can J Bot 68:864–866

    Article  CAS  Google Scholar 

  • Londoño A (2010) Efecto de la inoculación con un hongo micorrizal y un hongo solubilizador de fósforo en la absorción de fosfato y crecimiento de Leucaena leucocephala en un oxisol. Dissertation, Universidad Nacional de Colombia

  • Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (2008) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico

  • Mariscal E, Anzueto F, García A, Molina A (1997) Evaluación del efecto de las micorrizas en almácigos de café. Memorias del XVIII Simposio Latinoamericano de Café (IICA, ICAFE). http://www.anacafe.org/glifos/index.php?title=Efecto_micorrizas_almacigos. Accessed 17 March 2016

  • McAllister C, Garcia-Romera I, Martín J, Godeas A, Ocampo J (1995) Interaction between Aspergillus niger van Tiegh. and Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 129:309–316

    Article  Google Scholar 

  • McKean SJ (1993) Manual de análisis de suelos y tejido vegetal: una guía teórica y práctica de metodologías. Cent Int Agric Trop 129:1–99

    Google Scholar 

  • Mehltreter K (2008) Helechos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 83–93

  • Moguel P, Toledo VM (2004) Conservar produciendo: biodiversidad, café orgánico y jardines productivos. Biodiversitas 55:2–7

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Pérez E (2010) Hongos micorrízicos arbusculares (HMA) para la bioprotección de patógenos en el cultivo del tomate (Solanum lycopersicum L.). Dissertation, Universidad de la Habana

  • Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment to infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pohlan J (2002) México y la cafeticultura chiapaneca. Reflexiones y alternativas para los caficultores. Shaker Verlag, Alemania

    Google Scholar 

  • Relwani L, Krishna P, Reddy MS (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr Microbiol 57:401–440

    Article  CAS  PubMed  Google Scholar 

  • Ridge EH, Rovira AD (1971) Phosphatase activity of intact young wheat roots under sterile and non-sterile conditions. New Phytol 70:1017–1026

    Article  CAS  Google Scholar 

  • Rivera R, Fernández F, Sánchez C, Bustamante C, Herrera R, Ochoa M (1997) Efecto de la inoculación con hongos micorrizógenos VA y bacterias rizosféricas sobre el crecimiento de las posturas de cafeto. Cultiv Trop 18(3):15–23

    Google Scholar 

  • Rodrigues-Cabral JS, De Assis KC, Silva FG, Souchie EL, Carneiro MAC (2012) Seedlings of cashew trees of the Brazilian Cerrado inoculated with arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms. Agrociencia 46(8):809–821

    Google Scholar 

  • Rodríguez MJL (2001) Efecto del biofertilizante Mycoral® (micorriza arbuscular) en el desarrollo del café (Coffea arabica L.) en vivero en Zamorano, Honduras. Dissertation, Escuela Agrícola Panamericana

  • Rodríguez Y, Vierheilig H, Mazorra LM (2012) Alterations of the antioxidant enzyme activities are not general characteristics of the colonization process by arbuscular mycorrhizal fungi. Chil J Agric Res 72(3):411

    Article  Google Scholar 

  • Roozen N, VanderHoff F (2002) La aventura del comercio justo. Una alternativa de globalización por los fundadores de Max Havelaar. El Atajo, México

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29:353–369

    Article  CAS  Google Scholar 

  • Serna GLS (2013) Efecto de la inoculación conjunta con hongos micorrizales y microorganismos solubilizadores de fósforo en plantas de aguacate. Dissertation, Universidad Nacional de Colombia

  • Sharma AK, Johri BN (2002) Physiology of nutrient uptake by arbuscular mycorrhizal fungi. In: Sharma AK, Johri BN (eds) Arbuscular mycorrhizae. Interaction in plants, rhizosphere and soils. Science Publishers, Enfield, pp 279–308

    Google Scholar 

  • Shaykh MN, Robertsm LW (1974) A histochemical study of phosphatase in root apical meristems. Ann Bot 38:165–174

    Article  Google Scholar 

  • Sosa ML, Escamilla PE, Díaz CS (2004) Organic coffee. In: Wintgens JE (ed) Coffee: growing, processing, sustainable production. Wiley-VCG Verlag GmbH & Co., Weinheim, pp 339–354

    Chapter  Google Scholar 

  • Sosa V, Hernández-Salazar, Hernández-Conrique, Castro-Luna A (2008) Murciélagos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 181–191

  • Souchie EL, Azcón R, Barea JM, Saggin-Júnior OJ, Silva EMRD (2006) Phosphate solubilization and synergism between P-solubilizing and arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 41(9):1405–1411

    Article  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tadano T, Sakai H (1991) Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci Plant Nutr 37:129–140

    Article  CAS  Google Scholar 

  • Tarafdar JC, Chhonkar PK (1978) Status of phophatases in the root-soil interface of leguminous and non-leguminous crops. Z Pflanzenernäh Bodenkd 141(3):347–351

    Article  CAS  Google Scholar 

  • Tarafdar JC, Classen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatase produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Tejeda-Cruz, Gordon C (2008) Aves. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. instituto de ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INE-SEMARNAT), Mexico, pp 149–160

  • Trejo D, Ferrera-Cerrato R, García R, Valera L, Lara L, Alarcón A (2011) Efectividad de siete consorcios naticos de hongos micorrízicos arbusculares en plantas de café en condiciones de invernadero y campo. Rev Chil Hist Nat 84:23–31

    Article  Google Scholar 

  • Trouvelot A (1986) Mesure du taux de mycorhization VA d’un systemeradiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. Mycorrhizae: physiology and genetics, pp 217–221

  • Valenzuela-González, Quiroz-Robledo L, Martínez-Tapia D (2008) Hormigas (Insecta: Hymenoptera: Formicidae). In: Manson RH, Hernandez-Ortiz V, Gallina S, Mehltreter K (eds) Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. (INECOL) e Instituto de Nacional de Ecología (INESEMARNAT), Mexico, pp 107–121

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  Google Scholar 

  • Velázquez M, Elíades L, Irrazabal G, Saparrat C, Cabello M (2005) Mycobization with Glomus mosseae and Aspergillus niger in Lycopersicon esculentum plants. J Agric Technol 1(2):315–326

    Google Scholar 

  • Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24(5):383–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was part of the CONACyT (C01-0194) project, “Aplicación de las interacciones fúngicas en la restauración y fertilización del suelo” (2011/169124) carried out at the Instituto de Ecología, A.C. The first author thanks CONACyT for her master fellowship at the Instituto de Investigaciones Forestales, Universidad Veracruzana. We thank Biol. Miriam Lagunes Reyes, Noemí Orozco Domínguez, and Ing. Abraham Romero Fernández for their valuable support in processing samples. We also thank MGR Ariadna Martínez Virues for assistance with the chemical analyses. Allison Marie Jermain revised the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Arias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perea Rojas, Y.C., Arias, R.M., Medel Ortiz, R. et al. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforest Syst 93, 961–972 (2019). https://doi.org/10.1007/s10457-018-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-018-0190-1

Keywords

Navigation