Skip to main content

Advertisement

Log in

Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Targeted ultrasound contrast imaging has the potential to become a reliable molecular imaging tool. A better understanding of the quantitative aspects of molecular ultrasound technology could facilitate the translation of this technique to the clinic for the purposes of assessing vascular pathology and detecting individual response to treatment. The objective of this study was to evaluate whether targeted ultrasound contrast-enhanced imaging can provide a quantitative measure of endogenous biomarkers. Endoglin, an endothelial biomarker involved in the processes of development, vascular homeostasis, and altered in diseases, including hereditary hemorrhagic telangiectasia type 1 and tumor angiogenesis, was the selected target. We used a parallel plate perfusion chamber in which endoglin-targeted (MBE), rat isotype IgG2 control and untargeted microbubbles were perfused across endoglin wild-type (Eng +/+), heterozygous (Eng +/−) and null (Eng −/−) embryonic mouse endothelial cells and their adhesion quantified. Microbubble binding was also assessed in late-gestation, isolated living transgenic Eng +/− and Eng +/+ embryos. Nonlinear contrast-specific ultrasound imaging performed at 21 MHz was used to collect contrast mean power ratios for all bubble types. Statistically significant differences in microbubble binding were found across genotypes for both in vitro (p < 0.05) and embryonic studies (p < 0.001); MBE binding was approximately twofold higher in Eng +/+ cells and embryos compared with their Eng +/− counterparts. These results suggest that molecular ultrasound is capable of reliably differentiating between molecular genotypes and relating receptor densities to quantifiable molecular ultrasound levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BPM:

Beats per minute

CI:

Confidence interval

CMPR:

Contrast mean power ratio

E:

Embryonic day

E:β:

Endoglin:β-actin ratio

Eng:

Endoglin

Eng +/+ :

Endoglin wild-type

Eng +/− :

Endoglin heterozygous

Eng −/− :

Endoglin homozygous null

E:P:

Endoglin:PECAM-1 ratio

HR:

Heart rate

MBC :

Rat isotype IgG2 control antibody-targeted microbubbles

MBE :

Endoglin-targeted microbubbles

MBU :

Untargeted microbubbles

MFI:

Median fluorescence intensity

ROI:

Region of interest

TGFβ:

Transforming growth factor β

US:

Ultrasound

References

  1. Nassiri F, Cusimano MD, Scheithauer BW et al (2011) Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 31:2283–2290

    CAS  PubMed  Google Scholar 

  2. Deshpande N, Ren Y, Foygel K, Rosenberg J, Willmann JK (2011) Tumor angiogenic marker expression levels during tumor growth: longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology 258:804–811

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–533

    Article  CAS  PubMed  Google Scholar 

  4. Inaba Y, Lindner JR (2012) Molecular imaging of disease with targeted contrast ultrasound imaging. Transl Res 159:140–148

    Article  PubMed Central  PubMed  Google Scholar 

  5. Voigt JU (2009) Ultrasound molecular imaging. Methods 48:92–97

    Article  CAS  PubMed  Google Scholar 

  6. Klibanov A (2009) Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 47:875–882

    Article  PubMed  Google Scholar 

  7. Pysz MA, Foygel K, Rosenberg J, Gambhir SS, Schneider M, Willmann JK (2010) Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256:519–527

    Article  PubMed Central  PubMed  Google Scholar 

  8. Palmowski M, Huppert J, Ladewig G et al (2008) Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 7:101–109

    Article  CAS  PubMed  Google Scholar 

  9. Weller GER, Villanueva FS, Klibanov AL, Wagner WR (2002) Modulating targeted adhesion of an ultrasound contrast agent to dysfunctional endothelium. Ann Biomed Eng 30:1012–1019

    Article  PubMed  Google Scholar 

  10. Ferrante EA, Pickard JE, Rychak J, Klibanov A, Ley K (2009) Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 140:100–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Garcia MD, Udan RS, Hadjantonakis AK, Dickinson ME (2011) Live imaging of mouse embryos. Cold Spring Harb Protoc 2011:pdb. top104

  12. Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC (2008) Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 27:855

    PubMed  Google Scholar 

  13. Leong-Poi H (2009) Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res 84:190–200

    Article  CAS  PubMed  Google Scholar 

  14. Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    CAS  PubMed  Google Scholar 

  15. Takalkar AM, Klibanov AL, Rychak JJ, Lindner JR, Ley K (2004) Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release 96:473–482

    Article  CAS  PubMed  Google Scholar 

  16. Cregger M, Berger AJ, Rimm DL (2006) Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 130:1026–1030

    CAS  PubMed  Google Scholar 

  17. Gassmann M, Grenacher B, Rhode B, Johannes V (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845

    Article  CAS  PubMed  Google Scholar 

  18. Moestue SA, Gribbestad IS, Hansen R (2012) Intravascular targets for molecular contrast-enhanced ultrasound imaging. Int J Mol Sci 13:6679–6697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Audenet F, Yates DR, Cancel-Tassin G, Cussenot O, Rouprêt M (2012) Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine. BJU Int 109:1864–1870

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Ran S, Sambade M, Huang X, Thorpe PE (2002) A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model. Angiogenesis 5:35–44

    Article  CAS  PubMed  Google Scholar 

  21. Mercurio AM (2002) Lessons from the α2 integrin knockout mouse. Am J Pathol 161:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Johnson RC, Mayadas TN, Frenette PS et al (1995) Blood cell dynamics in P-selectin-deficient mice. Blood 86:1106–1114

    CAS  PubMed  Google Scholar 

  23. Bourdeau A, Faughnan ME, Letarte M (2000) Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10:279–285

    Article  CAS  PubMed  Google Scholar 

  24. Aristizábal O, Williamson R, Turnbull DH (2007) 12A-4 In vivo 3D contrast-enhanced imaging of the embryonic mouse vasculature. In: Ultrasonics Symposium, 2007, IEEE, New York, pp 1073–1076

  25. Bartelle BB, Berríos-Otero CA, Rodriguez JJ, Friendland AE, Aristizábal O, Turnbull DH (2012) Novel genetic approach for in vivo vascular imaging in mice. Circ Res 110:938–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Denbeigh JM, Nixon BA, Hudson JM, Purin MC, Foster FS (2014) VEGFR2-targeted molecular imaging in the mouse embryo: an alternative to the tumor model. Ultrasound Med Biol 40:389–399

    Article  PubMed  Google Scholar 

  27. Quackenbush EJ, Letarte M (1985) Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. J Immunol 134:1276–1285

    CAS  PubMed  Google Scholar 

  28. Paauwe M, ten Dijke P, Hawinkels LJAC (2013) Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets 17:421–435

    Article  CAS  PubMed  Google Scholar 

  29. Cheifetz S, Bellón T, Calés C et al (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030

    CAS  PubMed  Google Scholar 

  30. Nomura-Kitabayashi A, Anderson GA, Sleep G et al (2009) Endoglin is dispensable for angiogenesis, but required for endocardial cushion formation in the midgestation mouse embryo. Dev Biol 335:66–77

    Article  CAS  PubMed  Google Scholar 

  31. Dallas NA, Samuel S, Via L et al (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937

    Article  CAS  PubMed  Google Scholar 

  32. Sánchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabéu C (2002) Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 277:43799–43808

    Article  PubMed  Google Scholar 

  33. McAllister KA, Grogg KM, Johnson DW et al (1994) Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  CAS  PubMed  Google Scholar 

  34. Venkatesha S, Toporsian M, Lam C et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    Article  CAS  PubMed  Google Scholar 

  35. ten Dijke P, Goumans MJ, Pardali E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11:79–89

    Article  CAS  PubMed  Google Scholar 

  36. Korpanty G, Grayburn PA, Shohet RV, Brekken RA (2005) Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31:1279–1283

    Article  PubMed  Google Scholar 

  37. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Yang Y, Hong H, Cai W (2011) Multimodality molecular imaging of CD105 (Endoglin) expression. Int J Clin Exp Med 4:32

    PubMed Central  PubMed  Google Scholar 

  39. Dales JP, Garcia S, Carpentier S et al (2004) Long-term prognostic significance of neoangiogenesis in breast carcinomas: comparison of Tie-2/Tek, CD105, and CD31 immunocytochemical expression. Hum Pathol 35:176–183

    Article  CAS  PubMed  Google Scholar 

  40. Pece-Barbara N, Vera S, Kathirkamathamby K et al (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor β1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280:27800–27808

    Article  CAS  PubMed  Google Scholar 

  41. Jerkic M, Rivas-Elena JV, Prieto M et al (2004) Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J 18:609–611

    CAS  PubMed  Google Scholar 

  42. Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS (2010) Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 51:433–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Whiteley KJ, Adamson SL, Pfarrer CD (2006) Vascular corrosion casting of the uteroplacental and fetoplacental vasculature in mice. In: Soares MJ, Hunt JS (eds) Placenta and trophoblast: methods and protocols. Humana Press, Totowa, pp 371–392

    Google Scholar 

  44. Lyshchik A, Fleischer AC, Huamani J, Hallahan DE, Brissova M, Gore JC (2007) Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. J Ultrasound Med 26:1575–1586

    PubMed Central  PubMed  Google Scholar 

  45. Jerkic M, Rodriguez-Barbero A, Prieto M et al (2006) Reduced angiogenic responses in adult Endoglin heterozygous mice. Cardiovasc Res 69:845–854

    Article  CAS  PubMed  Google Scholar 

  46. Yamada M, Hatta T, Otani H (2008) Mouse exo utero development system: protocol and troubleshooting. Congenit Anom 48:183–187

    Article  Google Scholar 

  47. Kaufmann BA, Sanders JM, Davis C et al (2007) Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116:276–284

    Article  CAS  PubMed  Google Scholar 

  48. Barreiro O, Aguilar RJ, Tejera E et al (2009) Specific targeting of human inflamed endothelium and in situ vascular tissue transfection by the use of ultrasound contrast agents. JACC Cardiovasc Imaging 2:997–1005

    Article  PubMed  Google Scholar 

  49. Pochon S, Tardy I, Bussat P et al (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45:89–95

    Article  CAS  PubMed  Google Scholar 

  50. Dayton PA, Rychak JJ (2007) Molecular ultrasound imaging using microbubble contrast agents. Front Biosci 12:5124–5142

    Article  CAS  PubMed  Google Scholar 

  51. Gessner R, Dayton PA (2010) Advances in molecular imaging with ultrasound. Mol Imaging 9:117–127

    PubMed Central  PubMed  Google Scholar 

  52. Unnikrishnan S, Klibanov AL (2012) Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol 199:292–299

    Article  Google Scholar 

  53. Williams R, Hudson JM, Lloyd BA et al (2011) Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology 260:581

    Article  PubMed  Google Scholar 

  54. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49:113S–128S

    Article  CAS  PubMed  Google Scholar 

  55. Saini R, Sorace AG, Warram JM, Mahoney MJ, Zinn KR, Hoyt K (2013) an animal model allowing controlled receptor expression for molecular ultrasound imaging. Ultrasound Med Biol 39:172–180

    Article  PubMed Central  PubMed  Google Scholar 

  56. Toporsian M, Gros R, Kabir MG et al (2005) A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res 96:684–692

    Article  CAS  PubMed  Google Scholar 

  57. Wu J, Leong-Poi H, Bin J et al (2011) efficacy of contrast-enhanced US and magnetic microbubbles targeted to vascular cell adhesion molecule-1 for molecular imaging of atherosclerosis. Radiology 260:463

    Article  PubMed  Google Scholar 

  58. Guenther F, von zur Muhlen C, Ferrante EA, Grundmann S, Bode C, Klibanov AL (2010) An ultrasound contrast agent targeted to p-selectin detects activated platelets at supra-arterial shear flow conditions. Invest Radiol 45:586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rychak JJ, Lindner JR, Ley K, Klibanov AL (2006) Deformable gas-filled microbubbles targeted to P-selectin. J Control Rel 114:288–299

    Article  CAS  Google Scholar 

  60. Bachmann C, Klibanov AL, Olson TS et al (2006) Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology 130:8

    Article  CAS  PubMed  Google Scholar 

  61. Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL (2010) scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 45:579

    Article  CAS  PubMed  Google Scholar 

  62. Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA (2012) Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE Trans Ultrason Ferroelectr Freq Control 59:1596–1601

    Article  PubMed  Google Scholar 

  63. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN (2013) Three-Dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng C Methods 20(1):64–75

  65. Monsky WL, Carreira CM, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad vs cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  66. Jones EAV, Baron MH, Fraser SE, Dickinson ME (2004) Measuring hemodynamic changes during mammalian development. Am J Physiol Heart Circ Physiol 287:H1561–H1569

    Article  CAS  PubMed  Google Scholar 

  67. Allen Institute for Brain Science (2013) Allen developing mouse brain atlas: endoglin gene. http://developingmouse.brain-map.org

  68. Mullin L, Gessner R, Kwan J, Kaya M, Borden MA, Dayton PA (2011) Effect of anesthesia carrier gas on in vivo circulation times of ultrasound microbubble contrast agents in rats. Contrast Media Mol Imaging 6:126–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Aird WC (2007) Endothelial biomedicine. Cambridge University Press, New York

    Book  Google Scholar 

  70. Hodivala-Dilke K (2008) αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519

    Article  CAS  PubMed  Google Scholar 

  71. Duncan GS, Andrew DP, Takimoto H et al (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162:3022–3030

    CAS  PubMed  Google Scholar 

  72. Cybulsky MI, Iiyama K, Li H et al (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107:1255–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Xu H, Gonzalo JA, St Pierre Y et al (1994) Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 180:95–109

    Article  CAS  PubMed  Google Scholar 

  74. Gerwin N, Gonzalo JA, Lloyd C et al (1999) Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2-deficient mice results in extended hyperresponsiveness. Immunity 10:9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank John M. Hudson for assistance with microbubble handling and Valentin Sotov for assistance with MEEC Western blotting. This work was supported by the Terry Fox Programme of the National Cancer Institute of Canada.

Conflict of interest

F.S. Foster acknowledges his role as consultant to VisualSonics Inc.

Ethical standard

The experimental procedures performed in this study were approved by the Animal Care Committee at Sunnybrook Research Institute (Toronto, ON, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Denbeigh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denbeigh, J.M., Nixon, B.A., Lee, J.J.Y. et al. Contrast-enhanced molecular ultrasound differentiates endoglin genotypes in mouse embryos. Angiogenesis 18, 69–81 (2015). https://doi.org/10.1007/s10456-014-9447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9447-0

Keywords

Navigation