Skip to main content
Log in

Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Targeted ultrasound contrast agents can be prepared by attaching targeting ligands to the lipid, protein or polymer shell coating of gas-filled microbubbles. These materials are stable on storage, fully biocompatible and can be administered parenterally. Detection of microbubble contrast agents by ultrasound is very efficient (single particles with picogram mass can be visualized). Covalent or noncovalent binding techniques can be used to attach targeting ligands. Ligand-carrying microbubbles adhere to the respective molecular targets in vitro and in vivo. Several biomechanical methods are available to improve targeting efficacy, such as the use of a flexible tether spacer arm between the ligand and the bubble, and the use of folds on the microbubble shell, that project out, enhancing the contact area and increasing the length of the lever arm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen TM, Williamson P, Schlegel RA (1988) Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci USA 85:8067–8071. doi:10.1073/pnas.85.21.8067

    Article  Google Scholar 

  2. Bayer EA, Wilchek M, Skutelsky E (1976) Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex. FEBS Lett 68:240–244. doi:10.1016/0014-5793(76)80445-0

    Article  Google Scholar 

  3. Bogdanov AA Jr, Klibanov AL, Torchilin VP (1988) Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of n-hydroxysulfosuccinimide. FEBS Lett 231:381–384. doi:10.1016/0014-5793(88)80854-8

    Article  Google Scholar 

  4. Böhmer MR, Schroeders R, Steenbakkers JAM, de Winter SHPM, Duineveld PA, Lub J, Nijssen WPM, Pikkemaat JA, Stapert HR (2006) Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloids Surf A Physicochem Eng Asp 289:96–104. doi:10.1016/j.colsurfa.2006.04.011

    Article  Google Scholar 

  5. Borden MA, Sarantos MR, Stieger SM, Simon SI, Ferrara KW, Dayton PA (2006) Ultrasound radiation force modulates ligand availability on targeted contrast agents. Mol Imaging 5:139–147

    Google Scholar 

  6. Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW (2007) DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 23:9401–9408. doi:10.1021/la7009034

    Article  Google Scholar 

  7. Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW (2008) A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29:597–606

    Google Scholar 

  8. Christiansen JP, Leong-Poi H, Klibanov AL, Kaul S, Lindner JR (2002) Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation 105:1764–1767. doi:10.1161/01.CIR.0000015466.89771.E2

    Article  Google Scholar 

  9. De Geest BG, Skirtach AG, Mamedov AA, Antipov AA, Kotov NA, De Smedt SC, Sukhorukov GB (2007) Ultrasound-triggered release from multilayered capsules. Small 3:804–808. doi:10.1002/smll.200600441

    Article  Google Scholar 

  10. Della Martina A, Allemann E, Bettinger T, Bussat P, Lassus A, Pochon S, Schneider M (2008) Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing gp IIb/IIIa—characterization and in vitro testing. Eur J Pharm Biopharm 68:555–564. doi:10.1016/j.ejpb.2007.07.008

    Article  Google Scholar 

  11. El-Sherif DM, Wheatley MA (2003) Development of a novel method for synthesis of a polymeric ultrasound contrast agent. J Biomed Mater Res A 66:347–355. doi:10.1002/jbm.a.10586

    Article  Google Scholar 

  12. Fritz TA, Unger EC, Sutherland G, Sahn D (1997) Phase I clinical trials of MRX-115: a new ultrasound contrast agent. Invest Radiol 32:735–740. doi:10.1097/00004424-199712000-00003

    Article  Google Scholar 

  13. Fritz J, Katopodis AG, Kolbinger F, Anselmetti D (1998) Force-mediated kinetics of single p-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 95:12283–12288. doi:10.1073/pnas.95.21.12283

    Article  Google Scholar 

  14. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366. doi:10.1097/00004424-196809000-00011

    Article  Google Scholar 

  15. Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci USA 88:7708–7710. doi:10.1073/pnas.88.17.7708

    Article  Google Scholar 

  16. Hvattum E, Normann PT, Oulie I, Uran S, Ringstad O, Skotland T (2001) Determination of perfluorobutane in rat blood by automatic headspace capillary gas chromatography and selected ion monitoring mass spectrometry. J Pharm Biomed Anal 24:487–494. doi:10.1016/S0731-7085(00)00432-5

    Article  Google Scholar 

  17. Kim DH, Klibanov AL, Needham D (2000) The influence of tiered layers of surface-grafted poly(ethylene glycol) on receptor-ligand-mediated adhesion between phospholipid monolayer-stabilized microbubbles and coated class beads. Langmuir 16:2808–2817. doi:10.1021/la990749r

    Article  Google Scholar 

  18. Klibanov AL (1999) Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37:139–157. doi:10.1016/S0169-409X(98)00104-5

    Article  Google Scholar 

  19. Klibanov AL (2005) Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 16:9–17. doi:10.1021/bc049898y

    Article  Google Scholar 

  20. Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L (1991) Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062:142–148. doi:10.1016/0005-2736(91)90385-L

    Article  Google Scholar 

  21. Klibanov AL, Hughes MS, Marsh JN, Hall CS, Miller JG, Wible JH, Brandenburger GH (1997) Targeting of ultrasound contrast material: an in vitro feasibility study. Acta Radiol Suppl 412:113–120

    Google Scholar 

  22. Klibanov AL, Rasche PT, Hughes MS, Wojdyla JK, Galen KP, Wible JH Jr, Brandenburger GH (2004) Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol 39:187–195. doi:10.1097/01.rli.0000115926.96796.75

    Article  Google Scholar 

  23. Klibanov AL, Rychak JJ, Yang WC, Alikhani S, Li B, Acton S, Lindner JR, Ley K, Kaul S (2006) Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media Mol Imaging 1:259–266. doi:10.1002/cmmi.113

    Article  Google Scholar 

  24. Korpanty G, Grayburn PA, Shohet RV, Brekken RA (2005) Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31:1279–1283. doi:10.1016/j.ultrasmedbio.2005.06.001

    Article  Google Scholar 

  25. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330. doi:10.1158/1078-0432.CCR-06-1313

    Article  Google Scholar 

  26. Lentacker I, De Geest BG, Vandenbroucke RE, Peeters L, Demeester J, De Smedt SC, Sanders NN (2006) Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. Langmuir 22:7273–7278. doi:10.1021/la0603828

    Article  Google Scholar 

  27. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532. doi:10.1038/nrd1417

    Article  Google Scholar 

  28. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102:2745–2750

    Google Scholar 

  29. Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to p-selectin. Circulation 104:2107–2112. doi:10.1161/hc4201.097061

    Article  Google Scholar 

  30. Nakano H, Ishida Y, Hatakeyama T, Sakuraba K, Hayashi M, Sakurai O, Hataya K (2008) Contrast-enhanced intraoperative ultrasonography equipped with late Kupffer-phase image obtained by Sonazoid in patients with colorectal liver metastases. World J Gastroenterol 14:3207–3211. doi:10.3748/wjg.14.3207

    Article  Google Scholar 

  31. Olbrich C, Hauff P, Scholle F, Schmidt W, Bakowsky U, Briel A, Schirner M (2006) The in vitro stability of air-filled polybutylcyanoacrylate microparticles. Biomaterials 27:3549–3559

    Google Scholar 

  32. Ottoboni S, Short RE, Kerby MB, Tickner EG, Steadman E, Ottoboni TB (2006) Characterization of the in vitro adherence behavior of ultrasound responsive double-shelled microspheres targeted to cellular adhesion molecules. Contrast Media Mol Imaging 1:279–290. doi:10.1002/cmmi.115

    Article  Google Scholar 

  33. Park EY, Smith MJ, Stropp ES, Snapp KR, DiVietro JA, Walker WF, Schmidtke DW, Diamond SL, Lawrence MB (2002) Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes p-selectin bond clusters. Biophys J 82:1835–1847. doi:10.1016/S0006-3495(02)75534-3

    Article  Google Scholar 

  34. Pelura TJ (1998) Clinical experience with AF0150 (Imagent US), a new ultrasound contrast agent. Acad Radiol 5(Suppl 1):S69–S71. doi:10.1016/S1076-6332(98)80064-0 discussion S72-64

    Article  Google Scholar 

  35. Porter TR, Xie F, Kilzer K (1995) Intravenous perfluoropropane-exposed sonicated dextrose albumin produces myocardial ultrasound contrast that correlates with coronary blood flow. J Am Soc Echocardiogr 8:710–718. doi:10.1016/S0894-7317(05)80386-4

    Article  Google Scholar 

  36. Reynolds JA, Gilbert DB, Tanford C (1974) Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci USA 71:2925–2927. doi:10.1073/pnas.71.8.2925

    Article  Google Scholar 

  37. Rychak JJ, Klibanov AL, Hossack JA (2005) Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification. IEEE Trans Ultrason Ferroelectr Freq Control 52:421–433. doi:10.1109/TUFFC.2005.1417264

    Article  Google Scholar 

  38. Rychak JJ, Lindner JR, Ley K, Klibanov AL (2006) Deformable gas-filled microbubbles targeted to p-selectin. J Control Release 114:288–299. doi:10.1016/j.jconrel.2006.06.008

    Article  Google Scholar 

  39. Rychak JJ, Li B, Acton ST, Leppanen A, Cummings RD, Ley K, Klibanov AL (2006) Selectin ligands promote ultrasound contrast agent adhesion under shear flow. Mol Pharm 3:516–524. doi:10.1021/mp0600541

    Article  Google Scholar 

  40. Rychak JJ, Klibanov AL, Ley KF, Hossack JA (2007) Enhanced targeting of ultrasound contrast agents using acoustic radiation force. Ultrasound Med Biol 33:1132–1139. doi:10.1016/j.ultrasmedbio.2007.01.005

    Article  Google Scholar 

  41. Schneider M, Arditi M, Barrau MB, Brochot J, Broillet A, Ventrone R, Yan F (1995) BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 30:451–457. doi:10.1097/00004424-199508000-00001

    Article  Google Scholar 

  42. Skyba DM, Camarano G, Goodman NC, Price RJ, Skalak TC, Kaul S (1996) Hemodynamic characteristics, myocardial kinetics and microvascular rheology of FS-069, a second-generation echocardiographic contrast agent capable of producing myocardial opacification from a venous injection. J Am Coll Cardiol 28:1292–1300. doi:10.1016/S0735-1097(96)00328-2

    Article  Google Scholar 

  43. Straub JA, Chickering DE, Hartman TG, Gloff CA, Bernstein H (2007) AI-700 pharmacokinetics, tissue distribution and exhaled elimination kinetics in rats. Int J Pharm 328:35–41. doi:10.1016/j.ijpharm.2006.07.052

    Article  Google Scholar 

  44. Takalkar AM, Klibanov AL, Rychak JJ, Lindner JR, Ley K (2004) Binding and detachment dynamics of microbubbles targeted to p-selectin under controlled shear flow. J Control Release 96:473–482. doi:10.1016/j.jconrel.2004.03.002

    Article  Google Scholar 

  45. Toft KG, Hustvedt SO, Hals PA, Oulie I, Uran S, Landmark K, Normann PT, Skotland T (2006) Disposition of perfluorobutane in rats after intravenous injection of Sonazoid. Ultrasound Med Biol 32:107–114. doi:10.1016/j.ultrasmedbio.2005.09.008

    Article  Google Scholar 

  46. Torchilin VP, Weissig V (2003) Liposomes : a practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  47. Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Brandenburger GH, Wagner WR (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98:1–5

    Google Scholar 

  48. Weller GE, Villanueva FS, Tom EM, Wagner WR (2005) Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewis X. Biotechnol Bioeng 92:780–788. doi:10.1002/bit.20625

    Article  Google Scholar 

  49. Wheatley MA, Lathia JD, Oum KL (2007) Polymeric ultrasound contrast agents targeted to integrins: importance of process methods and surface density of ligands. Biomacromolecules 8:516–522. doi:10.1021/bm060659i

    Article  Google Scholar 

  50. Yanagisawa K, Moriyasu F, Miyahara T, Yuki M, Iijima H (2007) Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. Ultrasound Med Biol 33:318–325. doi:10.1016/j.ultrasmedbio.2006.08.008

    Article  Google Scholar 

  51. Zhao S, Borden M, Bloch SH, Kruse D, Ferrara KW, Dayton PA (2004) Radiation-force assisted targeting facilitates ultrasonic molecular imaging. Mol Imaging 3:135–148. doi:10.1162/1535350042380317

    Article  Google Scholar 

Download references

Acknowledgments

Help and support from the University of Virginia Cardiovascular Division, Cardiovascular Research Center and Cardiovascular Imaging center is appreciated. This study is supported in part via NIH 5R01EB002185 and R21/33CA102880. Ongoing collaboration with C.T. Chin and C. Hall (Philips Research North America), K. Ley (La Jolla Institute of Allergy and Immunology), J. Hossack (University of Virginia), J. Rychak (Targeson) is gratefully acknowledged. Generous donation of laboratory equipment by Mallinckrodt Inc. (Hazelwood MO) to A. Klibanov’s laboratory at the University of Virginia is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Klibanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klibanov, A.L. Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 47, 875–882 (2009). https://doi.org/10.1007/s11517-009-0498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0498-0

Keywords

Navigation