Skip to main content

Advertisement

Log in

Endothelialization approaches for viable engineered tissues

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

One of the main limitation in obtaining thick, 3-dimensional viable engineered constructs is the inability to provide a sufficient and functional blood vessel system essential for the in vitro survival and the in vivo integration of the construct. Different strategies have been proposed to simulate the ingrowth of new blood vessels into engineered tissue, such as the use of growth factors, fabrication scaffold technologies, in vivo prevascularization and cell-based strategies, and it has been demonstrated that endothelial cells play a central role in the neovascularization process and in the control of blood vessel function. In particular, different “environmental” settings (origin, presence of supporting cells, biomaterial surface, presence of hemodynamic forces) strongly influence endothelial cell function, angiogenic potential and the in vivo formation of durable vessels. This review provides an overview of the different techniques developed so far for the vascularization of tissue-engineered constructs (with their advantages and pitfalls), focusing the attention on the recent development in the cell-based vascularization strategy and the in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S132–S134

    Article  Google Scholar 

  2. Raimondi MT (2006) Engineered tissue as a model to study cell and tissue function from a biophysical perspective. Curr Drug Discov Technol 3:245–268

    Article  PubMed  CAS  Google Scholar 

  3. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev 7:211–224

    Article  CAS  Google Scholar 

  4. Khetani SR, Bhatia SN (2006) Engineering tissues for in vitro applications. Curr Opin Biotechnol 17:524–531

    Article  PubMed  CAS  Google Scholar 

  5. Wisser D, Steffes J (2003) Skin replacement with a collagen based dermal substitute, autologous keratinocytes and fibroblasts in burn trauma. Burns 29:375–380

    Article  PubMed  CAS  Google Scholar 

  6. Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, Vacanti CA (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plastic Reconstr Surg 103:1111–1119

    Article  CAS  Google Scholar 

  7. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  8. Frerich B, Lindemann N, Kurtz-Hoffmann J, Oertel K (2001) In vitro model of a vascular stroma for the engineering of vascularized tissues. Int J Oral Maxillofac Surg 30:414–420

    Article  PubMed  CAS  Google Scholar 

  9. Clark ERC (1939) Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64:251–301

    Article  Google Scholar 

  10. Jain RK, Au P, Tam AJ, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–882

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  PubMed  CAS  Google Scholar 

  12. Shieh SJ, Vacanti JP (2005) State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery 137:1–7

    Article  PubMed  Google Scholar 

  13. Curcio E, Macchiarini P, De Bartolo L (2010) Oxygen mass transfer in a human tissue-engineered trachea. Biomaterials 31:5131–5136

    Article  PubMed  CAS  Google Scholar 

  14. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    Article  PubMed  CAS  Google Scholar 

  15. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311

    Article  PubMed  CAS  Google Scholar 

  16. Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5:1002–1010

    Article  PubMed  Google Scholar 

  17. Levenberg S, Rouwkema J, Macdonald M, Garfein ES, Kohane DS, Darland DC, Marini R, van Blitterswijk CA, Mulligan RC, D’Amore PA, Langer R (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  PubMed  CAS  Google Scholar 

  18. Schnaper HW, Kleinman HK (1993) Regulation of cell function by extracellular matrix. Pediatr Nephrol 7:96–104

    Article  PubMed  CAS  Google Scholar 

  19. Gulino D, Delachanal E, Concord E, Genoux Y, Morand B, Valiron MO, Sulpice E, Scaife R, Alemany M, Vernet T (1998) Alteration of endothelial cell monolayer integrity triggers resynthesis of vascular endothelium cadherin. J Biol Chem 273:29786–29793

    Article  PubMed  CAS  Google Scholar 

  20. Hordijk PL, Anthony E, Mul FP, Rientsma R, Oomen LC, Roos D (1999) Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci 112:1915–1923

    PubMed  CAS  Google Scholar 

  21. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12:1331–1340

    PubMed  CAS  Google Scholar 

  22. Black AF, Damour O, Germain L, Auger FA (1999) A novel approach for studying angiogenesis: a human skin equivalent with a capillary-like network. Cell Biol Toxicol 15:81–90

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen LL, D’Amore PA (2001) Cellular interactions in vascular growth and differentiation. Int Rev Cytol 204:1–48

    Article  PubMed  CAS  Google Scholar 

  24. Pinney E, Liu K, Sheeman B, Mansbridge J (2000) Human three-dimensional fibroblast cultures express angiogenic activity. J Cell Phys 183:74–82

    Article  CAS  Google Scholar 

  25. Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64

    Article  PubMed  CAS  Google Scholar 

  26. Speiser W, Anders E, Preissner KT, Wagner O, Muller-Berghaus G (1987) Differences in coagulant and fibrinolytic activities of cultured human endothelial cells derived from omental tissue microvessels and umbilical veins. Blood 69(3):964–967

    PubMed  CAS  Google Scholar 

  27. Imbert E, Poot AA, Figdor CG, Feijen J (1998) Different growth behaviour of human umbilical vein endothelial cells and an endothelial cell line seeded on various polymer surfaces. Biomaterials 19:2285–2290

    Article  PubMed  CAS  Google Scholar 

  28. Lang I, Pabst MA, Hiden U, Blaschitz A, Dohr G, Hahn T, Desoye G (2003) Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. Eur J Cell Biol 82(4):163–173

    Article  PubMed  Google Scholar 

  29. Antonov AS, Key NS, Smirnov MD, Jacob HS, Vercellotti GM, Smirnov VN (1992) Prothrombotic phenotype diversity of human aortic endothelial cells in culture. Thromb Res 67:135–145

    Article  PubMed  CAS  Google Scholar 

  30. Hewett PW, Murray JC (1993) Human microvessel endothelial cells: isolation, culture and characterization. In Vitro Cell Dev Biol Anim 29A:823–830

    Article  PubMed  CAS  Google Scholar 

  31. Kumar S, West DC, Ager A (1987) Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36:57–70

    Article  PubMed  CAS  Google Scholar 

  32. Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F (2002) Endothelial cell heterogeneity and organ specificity. J Hemototherap Stem Cell Res 11:81–90

    Article  Google Scholar 

  33. Aird WC (2007) Phenotypich eterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    Article  PubMed  CAS  Google Scholar 

  34. Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Lorber MI, Sierra-Honigmann MR, Tellides G, Bothwell AL, Kashgarian M, Pober JS (2000) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci USA 97:9191–9196

    Article  PubMed  CAS  Google Scholar 

  35. Zheng L, Dengler TJ, Kluger MS, Madge LA, Schechner JS, Maher SE, Pober JS, Bothwell AL (2000) Cytoprotection of human umbilical vein endothelial cells against apoptosis and CTL mediated lysis provided by caspase-resistant Bcl-2 without alterations in growth or activation responses. J Immunol 164:4665–4671

    PubMed  CAS  Google Scholar 

  36. Enis DR, Shepherd BR, Wang Y, Qasim A, Shanahan CM, Weissberg PL, Kashgarian M, Pober JS, Schechner JS (2005) Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl-2-transduced endothelial cells. Proc Natl Acad Sci USA 102:425–430

    Article  PubMed  CAS  Google Scholar 

  37. Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652

    Article  PubMed  CAS  Google Scholar 

  38. Kelm JM, Djonov V, Hoerstrup SP, Guenter CI, Ittner LM, Greve F, Hierlemann A, Sanchez-Bustamante CD, Perriard JC, Ehler E, Fussenegger M (2006) Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng 12:2541–2553

    Article  PubMed  CAS  Google Scholar 

  39. Shepherd BR, Enis DR, Wang F, Suarez Y, Pober JS, Schechner JS (2006) Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J 20:1739–1741

    Article  PubMed  CAS  Google Scholar 

  40. Rouwkema J, De Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 12:2685–2693

    Article  PubMed  CAS  Google Scholar 

  41. Berglund JD, Galis ZS (2003) Designer blood vessels and therapeutic revascularization. Br J Pharmacol 140:627–636

    Article  PubMed  CAS  Google Scholar 

  42. Brey EM, Greisler HP (2005) Telomerase expression in somatic cells. Lancet 365:2068–2069

    Article  PubMed  Google Scholar 

  43. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, McKee JA, Klinger RY, Counter CM, Niklason LE (2005) Blood vessels engineered from human cells. Lancet 365:2122–2124

    Article  PubMed  Google Scholar 

  44. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768

    Article  PubMed  CAS  Google Scholar 

  45. Asahara T, Murohara T, Sullivan A, Silver M, van derZee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  46. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  47. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Article  PubMed  CAS  Google Scholar 

  48. Finkenzeller G, Torio-Padron N, Momeni A, Mehlhorn AT, Stark GB (2007) In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. Tissue Eng 13:1413–1420

    Article  PubMed  CAS  Google Scholar 

  49. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  PubMed  CAS  Google Scholar 

  50. Schatteman GC, Dunnwald M, Jiao C (2007) Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 292:H1–H18

    Article  PubMed  CAS  Google Scholar 

  51. Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78:413–421

    Article  PubMed  CAS  Google Scholar 

  52. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM (2007) An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J 21:511–522

    Article  PubMed  CAS  Google Scholar 

  53. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 99:4391–4396

    Article  PubMed  CAS  Google Scholar 

  54. Finkenzeller G, Graner S, Kirkpatrick CJ, Fuchs S, Stark GB (2009) Impaired in vivo vasculogenic potential of endothelial progenitor cells in comparison to human umbilical vein endothelial cells in a spheroid-based implantation model. Cell Prolif 42:498–505

    Article  PubMed  CAS  Google Scholar 

  55. Au P, Daheron LM, Duda DG, Cohen KS, Tyrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:1302–1305

    Article  PubMed  CAS  Google Scholar 

  56. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK (2004) Tissue engineering: creation of long-lasting blood vessels. Nature 428:138–139

    Article  PubMed  CAS  Google Scholar 

  57. Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ (2008) Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS ONE 3(12):e3922

    Article  PubMed  CAS  Google Scholar 

  58. Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann KH, Kampmann A, Mülhaupt R, Laschke MW, Menger MD, Gellrich NC, Rücker M (2009) Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvasc Res 78:180–190

    Article  PubMed  Google Scholar 

  59. Tavassol F, Schumann P, Lindhorst D, Sinikovic B, Voss A, von See C, Kampmann A, Bormann KH, Carvalho C, Mülhaupt R, Harder Y, Laschke MW, Menger MD, Gellrich NC, Rücker M (2010) Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells. Tissue Eng Part A 16:2265–2279

    Article  PubMed  CAS  Google Scholar 

  60. Liu H, Chen B, Lilly B (2008) Fibroblasts potentiate blood vessel formation partially through secreted factor TIMP-1. Angiogenesis 11:223–234

    Article  PubMed  CAS  Google Scholar 

  61. Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12:2875–2888

    Article  PubMed  CAS  Google Scholar 

  62. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  PubMed  CAS  Google Scholar 

  63. D’Amore PA (1992) Capillary growth: a two-cell system. Semin Cancer Biol 3:49–56

    PubMed  Google Scholar 

  64. Chen X, Aledia AS, Ghajar CM, Craig K, Griffith CK, Putnam AJ, Hughes CCW, George SC (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tiss Eng Part A 15:1363–1371

    Article  CAS  Google Scholar 

  65. Ghajar CM, Chen X, Harris JW, Suresh V, Hughes CC, Jeon NL, Putnam AJ, George SC (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94:1930–1941

    Article  PubMed  CAS  Google Scholar 

  66. Hughes CC (2008) Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 15:204–209

    Article  PubMed  Google Scholar 

  67. Velazquez OC, Snyder R, Liu ZJ, Fairman RM, Herlyn M (2002) Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. FASEB J 16:1316–1318

    PubMed  CAS  Google Scholar 

  68. Liu S, Zhang H, Zhang X, Lu W, Huang X, Xie H, Zhou J, Wang W, Zhang Y, Liu Y, Deng Z, Jin Y (2011) Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Eng Part A 17:725–739

    Article  PubMed  CAS  Google Scholar 

  69. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  70. Darland DC, D’Amore PA (1999) Blood vessel maturation: vascular development comes of age. J Clin Invest 103:157–158

    Article  PubMed  CAS  Google Scholar 

  71. Darland DC, D’Amore PA (2001) Cell-cell interactions in vascular development. Curr Top Dev Biol 52:107–149

    Article  PubMed  CAS  Google Scholar 

  72. Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, Schoen FJ, Mayer JE Jr, Bischoff J (2004) Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 287:H480–H487

    Article  PubMed  CAS  Google Scholar 

  73. Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, Arzigian M, Fukumura D, Jain RK, Scadden DT (2007) Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 25:317–318

    Article  PubMed  CAS  Google Scholar 

  74. Ding R, Darland DC, Parmacek MS, D’Amore PA (2004) Endothelial-mesenchymal interactions in vitro reveal molecular mechanisms of smooth muscle/pericyte differentiation. Stem Cells Dev 13:509–520

    PubMed  CAS  Google Scholar 

  75. Dye J, Lawrence L, Linge C, Leach L, Firth J, Clark P (2004) Distinct patterns of microvascular endothelial cell morphology are determined by extracellular matrix composition. Endothelium 11:151–167

    Article  PubMed  CAS  Google Scholar 

  76. Chennazhy KP, Krishnan LK (2005) Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering. Biomaterials 26:5658–5667

    Article  CAS  Google Scholar 

  77. Underwood PA, Bennett FA (1993) The effect of extracellular matrix molecules on the in vitro behavior of bovine endothelial cells. Exp Cell Res 205:311–319

    Article  PubMed  CAS  Google Scholar 

  78. Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, Lee IS (2005) The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Meth 148:60–70

    Article  CAS  Google Scholar 

  79. Chen R, Curran SJ, Curran JM, Hunt JA (2006) The use of poly (1-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials 27:4453–4460

    Article  PubMed  CAS  Google Scholar 

  80. Connelly JT, Garcia AJ, Levenston ME (2007) Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials 28:1071–1083

    Article  PubMed  CAS  Google Scholar 

  81. Petrie TA, Capadona JR, Reyes CD, Garcia AJ (2006) Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials 27:5459–5470

    Article  PubMed  CAS  Google Scholar 

  82. Mooney DJ, Hansen LK, Langer R, Vacanti JP, Ingber DE (1994) Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover. MolBiol Cell 5:1281–1288

    CAS  Google Scholar 

  83. McGuigan AP, Sefton MV (2007) The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28:2547–2571

    Article  PubMed  CAS  Google Scholar 

  84. Huang NF, Chu J, Lee RJ, Li S (2010) Biophysical and chemical effects of fibrin on mesenchymal stromal cell gene expression. Acta Biomater 6:3947–3956

    Article  PubMed  CAS  Google Scholar 

  85. Kakisis JD, Liapis CD, Sumpio BE (2004) Effects of cyclic strain on vascular cells. Endothelium 11:17–28

    Article  PubMed  CAS  Google Scholar 

  86. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  PubMed  CAS  Google Scholar 

  87. Ando J, Yamamoto K (2011) Effects of shear stress and stretch on endothelial function. Antioxid Redox Signal 15:1389–1403

    Article  PubMed  CAS  Google Scholar 

  88. Yoshizumi M, Kurihara H, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1989) Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun 161:859–864

    Article  PubMed  CAS  Google Scholar 

  89. Grabowski EF, Lam FP (1995) Endothelial cell function, including tissue factor expression, under flow conditions. Thromb Haemost 74:123–128

    PubMed  CAS  Google Scholar 

  90. Sampath R, Kukielka GL, Smith CW, Eskin SG, McIntire LV (1995) Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro. Ann Biomed Eng 23:247–256

    Article  PubMed  CAS  Google Scholar 

  91. Westmuckett AD, Lupu C, Roquefeuil S, Krausz T, Kakkar VV, Lupu F (2000) Fluid flow induces upregulation of synthesis and release of tissue factor pathway inhibitor in vitro. Arterioscler Thromb Vasc Biol 20:2474–2482

    Article  PubMed  CAS  Google Scholar 

  92. Ives CL, Eskin SG, McIntire LV (1986) Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Dev Biol 22:500–507

    Article  PubMed  CAS  Google Scholar 

  93. Thoumine O, Nerem RM, Girard PR (1995) Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Lab Invest 73:565–576

    PubMed  CAS  Google Scholar 

  94. Chiquet M, Matthisson M, Koch M, Tannheimer M, Chiquet-Ehrismann R (1996) Regulation of extracellular matrix synthesis by mechanical stress. Biochem Cell Biol 74:737–744

    Article  PubMed  CAS  Google Scholar 

  95. Kosaki K, Ando J, Korenaga R, Kurokawa T, Kamiya A (1998) Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circ Res 82:794–802

    Article  PubMed  CAS  Google Scholar 

  96. Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95:2081–2088

    PubMed  Google Scholar 

  97. Ando J, Korenaga R, Kamiya A (1999) Flow-induced endothelial gene regulation. In: Lelkes PI (ed) Mechanical forces and the endothelium. Harwood academic publishers, Singapore, pp 111–126

    Google Scholar 

  98. Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102:15779–15784

    Article  PubMed  CAS  Google Scholar 

  99. Helm CL, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 96:167–176

    Article  PubMed  CAS  Google Scholar 

  100. Ng CP, Helm CL, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68:258–264

    Article  PubMed  Google Scholar 

  101. Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Bréant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    Article  PubMed  CAS  Google Scholar 

  102. Joung IS, Iwamoto MN, Shiu YT, Quam CT (2006) Cyclic strain modulates tubulogenesis of endothelial cells in a 3D tissue culture model. Microvasc Res 71:1–11

    Article  PubMed  Google Scholar 

  103. Von Offenberg SweeneyN, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA (2005) Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 329:573–582

    Article  CAS  Google Scholar 

  104. Matsumoto T, Yung YC, Fischbach C, Kong HJ, Nakaoka R, Mooney DJ (2007) Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng 13:207–217

    Article  PubMed  CAS  Google Scholar 

  105. Gassman AA, Kuprys T, Ucuzian AA, Brey E, Matsumura A, Pang Y, Larson J, Greisler HP (2011) Three-dimensional 10 % cyclicstrain reduces bovine aortic endothelial cell angiogenic sprout length and augments tubulogenesis in tubular fibrin hydrogels. J Tissue Eng Regen Med 5:375–383

    Article  PubMed  CAS  Google Scholar 

  106. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029–1034

    Article  PubMed  CAS  Google Scholar 

  107. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner LM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  PubMed  CAS  Google Scholar 

  108. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Suzuki T, Mizuno S, Nakamura T, Sasaki H (2004) Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. BiochemBiophys Res Commun 324:276–280

    Article  CAS  Google Scholar 

  109. Korbling M, Reuben JM, Gao H, Lee BN, Harris DM, Cogdell D, Girald SA, Khouri IF, Saliba RM, Champlin RE, Zhang W, Estrov Z (2006) Recombinant human granulocyte-colony-stimulating factor-mobilized and apheresis-collected endothelial progenitor cells: a novel blood cell component for therapeutic vasculogenesis. Transfusion 46:1795–1802

    Article  PubMed  CAS  Google Scholar 

  110. Schantz JT, Chim H, Whiteman M (2007) Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 13(11):2615–2624

    Article  PubMed  CAS  Google Scholar 

  111. Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L (2010) The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 31:3997–4008

    Article  PubMed  CAS  Google Scholar 

  112. Hirschi KK, Skalak TC, Peirce SM, Little CD (2002) Vascular assembly in natural and engineered tissues. Ann NY Acad Sci 961:223–242

    Article  PubMed  CAS  Google Scholar 

  113. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  114. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Article  PubMed  CAS  Google Scholar 

  115. Ley CD, Olsen MW, Lund EL, Kristjansen PE (2004) Angiogenic synergy of bFGF and VEGF is antagonized by angiopoietin- 2 in a modified in vivo Matrigel assay. Microvasc Res 68:161–168

    Article  PubMed  CAS  Google Scholar 

  116. Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR beta signaling. J Cell Sci 118:3759–3768

    Article  PubMed  CAS  Google Scholar 

  117. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131

    Article  PubMed  CAS  Google Scholar 

  118. Rophael JA, Craft RO, Palmer JA, Hussey AJ, Thomas GP, Morrison WA, Penington AJ, Mitchell GM (2007) Angiogenic growth factor synergism in a murine tissue-engineering model of angiogenesis and adipogenesis. Am J Pathol 171:2048–2057

    Article  PubMed  CAS  Google Scholar 

  119. Saif J, Schwarz TM, Chau DY, Henstock J, Sami P, Leicht SF, Hermann PC, Alcala S, Mulero F, Shakesheff KM, Heeschen C, Aicher A (2010) Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization. Arterioscler Thromb Vasc Biol 30:1897–1904

    Article  PubMed  CAS  Google Scholar 

  120. Sun G, Shen YI, Kusuma S, Fox-Talbot K, Gerecht S (2011) Functional neovascularization of biodegradable dextran hydrogels with multiple angio-genic growth factors. Biomaterials 32:95–106

    Article  PubMed  CAS  Google Scholar 

  121. Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    Article  PubMed  CAS  Google Scholar 

  122. Demirdogen B, Elcin AE, Elcin YM (2010) Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Growth Factors 28:426–436

    Article  PubMed  CAS  Google Scholar 

  123. Borselli C, Ungaro F, Oliviero O, d’Angelo I, Quaglia F, La Rotonda MI, Netti PA (2010) Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res A 92:94–102

    PubMed  Google Scholar 

  124. Prokop A, Kozlov E, Nun Non S, Dikov MM, Sephel GC, Whitsitt JS, Davidson JM (2001) Towards retrievable vascularized bioartificial pancreas: induction and long-lasting stability of polymeric mesh implant vascularized with the help of acidic and basic fibroblast growth factors and hydrogel coating. Diabetes Technol Ther 3:245–261

    Article  PubMed  CAS  Google Scholar 

  125. Ko C, Dixit V, Shaw W, Gitnick G (1995) In vitro slow release profile of endothelial cell growth factor immobilized within calcium alginate microbeads. Artif Cells Blood Substit Immobil Biotechnol 23:143–151

    Article  PubMed  CAS  Google Scholar 

  126. Karal-Yilmaz O, Serhatl M, Baysal K, Baysal BM (2011) Preparation and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(d, l-lactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporation technique. J Microencapsul 28:46–54

    Article  PubMed  CAS  Google Scholar 

  127. de Boer R, Knight AM, Spinner RJ, Malessy MJ, Yaszemski MJ, Windebank AJ (2010) In vitro and in vivo release of nerve growth factor from biodegradable poly-lactic-co-glycolic-acid microspheres. J Biomed Mater Res A 95:1067–1073

    PubMed  Google Scholar 

  128. d’Angelo I, Garcia-Fuentes M, Parajo Y, Welle A, Vantus T, Horvath A, Bokonyi G, Keri G, Alonso MJ (2010) Nanoparticles based on PLGA: poloxamer blends for the delivery of proangiogenic growth factors. Mol Pharm (Epub ahead of print)

  129. Layman H, Xi XL, Nagar E, Vial X, Pham SM, Andreopoulos FM (2012) Enhanced angiogenic efficacy through controlled and sustained delivery of FGF-2 and G-CSF from fibrin hydrogels containing ionic-albumin microspheres. J Biomater Sci Polym Ed 23:185–206

    Article  PubMed  CAS  Google Scholar 

  130. Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang T, Liu J, Yu J, Zhou X, Hu J (2007) Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 107:17–29

    Article  PubMed  Google Scholar 

  131. Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12:295–310

    Article  PubMed  CAS  Google Scholar 

  132. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312

    Article  PubMed  CAS  Google Scholar 

  133. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65:489–497

    Article  PubMed  CAS  Google Scholar 

  134. Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27:552–558

    Article  PubMed  CAS  Google Scholar 

  135. Perez-Castillejos R (2010) Replication of the 3D architecture of tissues. Mater Today 13:32–41

    Article  CAS  Google Scholar 

  136. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124

    Article  PubMed  CAS  Google Scholar 

  137. Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem 8:300–310

    Article  PubMed  CAS  Google Scholar 

  138. Khan OF, Sefton MV (2011) Endothelialized biomaterials for tissue engineering applications in vivo. Trends Biotechnol 9(8):379–387

    Article  CAS  Google Scholar 

  139. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  PubMed  CAS  Google Scholar 

  140. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  PubMed  CAS  Google Scholar 

  141. Cassell OC, Morrison WA, Messina A, Penington AJ, Thompson EW, Stevens GW, Perera JM, Kleinman HK, Hurley JV, Romeo R, Knight KR (2001) The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann NY Acad Sci 944:429–442

    Article  PubMed  CAS  Google Scholar 

  142. Tanaka Y, Tsutsumi A, Crowe DM, Tajima S, Morrison WA (2000) Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg 53:51–57

    Article  PubMed  CAS  Google Scholar 

  143. Polykandriotis E, Arkudas A, Beier JP, Hess A, Greil P, Papadopoulos T, Kopp J, Bach AD, Horch RE, Kneser U (2007) Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle. Plast Reconstr Surg 120:855–868

    Article  PubMed  CAS  Google Scholar 

  144. Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann KU, Hess A, Brune K, Greil P, Stürzl M, Horch RE (2006) Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12:1721–1731

    Article  PubMed  CAS  Google Scholar 

  145. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441

    Article  PubMed  CAS  Google Scholar 

  146. Ogawa R, Oki K, Hyakusoku H (2007) Vascular tissue engineering and vascularized 3D tissue regeneration. Regen Med 2:831–837

    Article  PubMed  Google Scholar 

  147. Hyakusoku H (1993) Secondary vascularised hair-bearing island flaps for eyebrow reconstruction. Br J Plast Surg 46:45–47

    Article  PubMed  CAS  Google Scholar 

  148. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272

    Article  PubMed  CAS  Google Scholar 

  149. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillarylike structures on three-dimensional porous biomaterials. Biomaterials 28:3965–3976

    Article  PubMed  CAS  Google Scholar 

  150. Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, Eblenkamp M, Gomes M, Reis RL, Kirkpatrick CJ (2009) Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30:526–534

    Article  PubMed  CAS  Google Scholar 

  151. Yu H, VandeVord PJ, Mao L, Matthew HW, Wooley PH, Yang SY (2009) Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30:508–517

    Article  PubMed  CAS  Google Scholar 

  152. Unger RE, Ghanaati S, Orth C, Sartoris A, Barbeck M, Halstenberg S, Motta A, Migliaresi C, Kirkpatrick CJ (2010) The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 31:6959–6967

    Article  PubMed  CAS  Google Scholar 

  153. Choong CS, Hutmacher DW, Triffitt JT (2006) Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng 12:2521–2531

    Article  PubMed  CAS  Google Scholar 

  154. Fuchs S, Hoffmann A, Kirkpatrick CJ (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13:2577–2588

    Article  PubMed  CAS  Google Scholar 

  155. Gibot L, Galbraith T, Huot J, Auger FA (2010) A preexisting microvascular network benefits in vivo revascularization of a microvascularized tissue-engineered skin substitute. Tissue Eng Part A 16:3199–3206

    Article  PubMed  CAS  Google Scholar 

  156. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 16:115–125

    Article  PubMed  CAS  Google Scholar 

  157. Koffler J, Kaufman-Francis K, Shandalov Y, Egozi D, Pavlov DA, Landesberg A, Levenberg S (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108:14789–14794

    Article  PubMed  CAS  Google Scholar 

  158. Yu H, Vandevord PJ, Gong W, Wu B, Song Z, Matthew HW, Wooley PH, Yang SY (2008) Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J Orthop Res 26:1147–1152

    Article  PubMed  Google Scholar 

  159. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T, Dong J (2010) The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31:1171–1179

    Article  PubMed  CAS  Google Scholar 

  160. Schultheiss D, Gabouev AI, Cebotari S, Tudorache I, Walles T, Schlote N, Wefer J, Kaufmann PM, Haverich A, Jonas U, Stief CG, Mertsching H (2005) Biological vascularized matrix for bladder tissue engineering: matrix preparation, reseeding technique and short term implantation in a porcine model. J Urol 173:276–280

    Article  PubMed  Google Scholar 

  161. Verseijden F, Posthumus-van Sluijs SJ, Farrell E, van Neck JW, Hovius SE, Hofer SO, van Osch GJ (2010) Prevascular structures promote vascularization in engineered human adipose tissue constructs upon implantation. Cell Transplant 19:1007–1020

    Article  PubMed  Google Scholar 

  162. Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, Hofer SO, Hovius SE, van Osch GJ (2012) Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice. J Tissue Eng Regen Med 6:169–178

    Article  PubMed  CAS  Google Scholar 

  163. Sahar DE, Walker JA, Wang HT, Stephenson SM, Shah AR, Krishnegowda NK, Wenke JC (2012) Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D, L-lactide) scaffolds in vivo. J Craniofac Surg 23:913–918

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under grant agreement no 278570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Baiguera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baiguera, S., Ribatti, D. Endothelialization approaches for viable engineered tissues. Angiogenesis 16, 1–14 (2013). https://doi.org/10.1007/s10456-012-9307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9307-8

Keywords

Navigation