Skip to main content

Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach

  • Living reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Abstract

During the last decades, numerous approaches for the engineering of soft and hard tissues were developed. However, tissues with a thickness larger than 2 mm show limited diffusion of essential nutrients which underlines the need for vascularization (Griffith et al., Tissue Eng 11(1–2):257–266, 2005). It is therefore of utmost importance to generate functional prevascularized thick tissues, which can be surgically connected to host tissues. First prevascularization strategies started in the early 1980s when Judah Folkman published his work about the role of endothelial cells in angiogenesis by trying to identify endothelial cell function during blood vessel formation (Folkman, Lab Investig 51(6):601–604, 1984). This was the decade when first prevascularization strategies began in polymeric scaffolds. The discovery of growth factors and cytokines led to the development of growth factor loaded constructs for delivery during the last decade of the twentieth century. Over the years, protocols for the decellularization or extraction of biological materials were developed which led to a boom of vascularization strategies in these matrices since the early 2000s. Technical progress during the last years makes now the 3D bioprinting of tissues and vasculature possible, although the use of this method in microvascular tissue engineering is still in its infancy. Independent of which matrix is used for the prevascularization strategy, the growing knowledge about cell interactions and pathways in angiogenesis as well as vasculogenesis led to the conclusion that the use of 3D cultures instead of 2D formed networks and the combination of endothelial cells with cells displaying angiogenesis stimulating properties led to the most promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bachmann B, Spitz S, Rothbauer M, Jordan C, Purtscher M, Zirath H, Schuller P, Eilenberger C, Ali SF, Muhleder S, Priglinger E, Harasek M, Redl H, Holnthoner W, Ertl P (2018) Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling. Biomicrofluidics 12(4):042216

    Google Scholar 

  • Banno K, Yoder MC (2018) Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 83(1–2):283–290

    Article  Google Scholar 

  • Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5):435–450

    Article  Google Scholar 

  • Ben-Shaul S, Landau S, Merdler U, Levenberg S (2019) Mature vessel networks in engineered tissue promote graft-host anastomosis and prevent graft thrombosis. Proc Natl Acad Sci USA 116(8):2955–2960

    Article  Google Scholar 

  • Calderon GA, Thai P, Hsu CW, Grigoryan B, Gibson SM, Dickinson ME, Miller JS (2017) Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomater Sci 5(8):1652–1660

    Article  Google Scholar 

  • Chandra P, Atala A (2019) Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci (Lond) 133(9):1115–1135

    Article  Google Scholar 

  • Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regen Med 2:7

    Google Scholar 

  • Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, George SC (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A 15(6):1363–1371

    Article  Google Scholar 

  • Cheung AL (2007) Isolation and culture of human umbilical vein endothelial cells (HUVEC). Curr Protoc Microbiol Appendix 4:Appendix 4B

    Google Scholar 

  • Colunga T, Dalton S (2018) Building blood vessels with vascular progenitor cells. Trends Mol Med 24(7):630–641

    Article  Google Scholar 

  • Duttenhoefer F, Lara de Freitas R, Meury T, Loibl M, Benneker LM, Richards RG, Alini M, Verrier S (2013) 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater 26:49–64; discussion 64-5

    Google Scholar 

  • Elster AD (2019) What are the usual velocities of blood found in the human vascular system? http://mriquestions.com/expected-velocities.html

  • Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J (2010) The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs. Tissue Eng Part A 16(7):2355–2367

    Article  Google Scholar 

  • Gianni-Barrera R, Di Maggio N, Melly L, Burger MG, Mujagic E, Gurke L, Schaefer DJ, Banfi A (2020) Therapeutic vascularization in regenerative medicine. Stem Cells Transl Med 9(4):433–444

    Article  Google Scholar 

  • Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, Markmann JF, Sachs DH, Chandraker A, Wertheim JA, Rothblatt M, Boyden ES, Eidbo E, Lee WPA, Pomahac B, Brandacher G, Weinstock DM, Elliott G, Nelson D, Acker JP, Uygun K, Schmalz B, Weegman BP, Tocchio A, Fahy GM, Storey KB, Rubinsky B, Bischof J, Elliott JAW, Woodruff TK, Morris GJ, Demirci U, Brockbank KGM, Woods EJ, Ben RN, Baust JG, Gao D, Fuller B, Rabin Y, Kravitz DC, Taylor MJ, Toner M (2017) The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 35(6):530–542

    Article  Google Scholar 

  • Greco Song HH, Rumma RT, Ozaki CK, Edelman ER, Chen CS (2018) Vascular tissue engineering: Progress, challenges, and clinical promise. Cell Stem Cell 22(4):608

    Article  Google Scholar 

  • Gutowski P, Gage SM, Guziewicz M, Ilzecki M, Kazimierczak A, Kirkton RD, Niklason LE, Pilgrim A, Prichard HL, Przywara S, Samad R, Tente B, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Lawson JH (2020) Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. J Vasc Surg 72(4):1247–1258

    Google Scholar 

  • Hackethal J, Muhleder S, Hofer A, Schneider KH, Pruller J, Hennerbichler S, Redl H, Teuschl A (2017) An effective method of atelocollagen type 1/3 isolation from human placenta and its in vitro characterization in two-dimesional and three-dimensional cell culture applications. Tissue Eng Part C Methods 23(5):274–285

    Article  Google Scholar 

  • Hackethal J, Schuh C, Hofer A, Meixner B, Hennerbichler S, Redl H, Teuschl AH (2018) Human placenta Laminin-111 as a multifunctional protein for tissue engineering and regenerative medicine. Adv Exp Med Biol 1077:3–17

    Article  Google Scholar 

  • Heath CA (2000) Cells for tissue engineering. Trends Biotechnol 18(1):17–19

    Article  Google Scholar 

  • Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11(10):1775–1781

    Article  Google Scholar 

  • Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13(8):1489–1500

    Article  Google Scholar 

  • Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE (2016) Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet 387(10032):2026–2034

    Article  Google Scholar 

  • Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779

    Article  Google Scholar 

  • Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15(3):353–370

    Article  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  Google Scholar 

  • Miller JS (2014) The billion cell construct: will three-dimensional printing get us there? PLoS Biol 12(6):e1001882

    Article  Google Scholar 

  • Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee SH, Smith AA, Dickinson ME, West JL (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847

    Article  Google Scholar 

  • Morgan DM (1996) Isolation and culture of human umbilical vein endothelial cells. Methods Mol Med 2:101–109

    Google Scholar 

  • Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W (2014) Connections matter: channeled hydrogels to improve vascularization. Front Bioeng Biotechnol 2:52

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  • Murphy SV, De Coppi P, Atala A (2019) Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng

    Google Scholar 

  • Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (Weinh) 6(11):1900344

    Article  Google Scholar 

  • Pang H, Wu XH, Fu SL, Luo F, Zhang ZH, Hou TY, Li ZQ, Chang ZQ, Yu B, Xu JZ (2013) Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction. Int Orthop 37(4):753–759

    Article  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2015) The tissue-engineered vascular graft-past, present, and future. Tissue Eng Part B Rev 22(1): 68–100

    Google Scholar 

  • Phelps EA, Garcia AJ (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21(5):704–709

    Article  Google Scholar 

  • Polykandriotis E, Arkudas A, Horch RE, Kneser U (2008) To matrigel or not to matrigel. Am J Pathol 172(5):1441; author reply 1441-2

    Article  Google Scholar 

  • Rohringer S, Hofbauer P, Schneider KH, Husa AM, Feichtinger G, Peterbauer-Scherb A, Redl H, Holnthoner W (2014) Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 17(4):921–933

    Article  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  Google Scholar 

  • Rouwkema J, Westerweel PE, de Boer J, Verhaar MC, van Blitterswijk CA (2009) The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng Part A 15(8):2015–2027

    Article  Google Scholar 

  • Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S, Hofmann A, Largo RA, Marschall JS, Groppa E, Gianni-Barrera R, Ehrbar M, Hubbell JA, Redl H, Banfi A (2014) Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111(19):6952–6957

    Article  Google Scholar 

  • Schaupper M, Jeltsch M, Rohringer S, Redl H, Holnthoner W (2016) Lymphatic vessels in regenerative medicine and tissue engineering. Tissue Eng Part B Rev 22(5):395–407

    Article  Google Scholar 

  • Schneider KH (2016) Decellularized vascular structures and substances from human placental tissue – a source for small-diameter vascular grafts and human collagen. Dissertation, University of Natural Resources and Life Sciences, Vienna (BOKU)

    Google Scholar 

  • Schuh CM, Monforte X, Hackethal J, Redl H, Teuschl AH (2016) Covalent binding of placental derived proteins to silk fibroin improves schwann cell adhesion and proliferation. J Mater Sci Mater Med 27(12):188

    Article  Google Scholar 

  • Shafiee A, Atala A (2017) Tissue engineering: toward a new era of medicine. Annu Rev Med 68:29–40

    Article  Google Scholar 

  • Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533

    Article  Google Scholar 

  • Smith RJ Jr, Nasiri B, Kann J, Yergeau D, Bard JE, Swartz DD, Andreadis ST (2020) Endothelialization of arterial vascular grafts by circulating monocytes. Nat Commun 11(1):1622

    Article  Google Scholar 

  • Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15(1):115

    Article  Google Scholar 

  • Tytgat L, Dobos A, Markovic M, Van Damme L, Van Hoorick J, Bray F, Thienpont H, Ottevaere H, Dubruel P, Ovsianikov A, Van Vlierberghe S (2020) High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications. Biomacromolecules 21(10):3997–4007

    Google Scholar 

  • Uccelli A, Wolff T, Valente P, Di Maggio N, Pellegrino M, Gurke L, Banfi A, Gianni-Barrera R (2019) Vascular endothelial growth factor biology for regenerative angiogenesis. Swiss Med Wkly 149:w20011

    Google Scholar 

  • Wakabayashi T, Naito H, Suehiro JI, Lin Y, Kawaji H, Iba T, Kouno T, Ishikawa-Kato S, Furuno M, Takara K, Muramatsu F, Weizhen J, Kidoya H, Ishihara K, Hayashizaki Y, Nishida K, Yoder MC, Takakura N (2018) CD157 Marks tissue-resident endothelial stem cells with homeostatic and regenerative properties. Cell Stem Cell 22(3):384–397 e6

    Article  Google Scholar 

  • Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007

    Article  Google Scholar 

  • White SM, Pittman CR, Hingorani R, Arora R, Esipova TV, Vinogradov SA, Hughes CC, Choi B, George SC (2014) Implanted cell-dense prevascularized tissues develop functional vasculature that supports reoxygenation after thrombosis. Tissue Eng Part A 20(17–18):2316–2328

    Article  Google Scholar 

  • Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Masse S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15(6):669–678

    Article  Google Scholar 

  • Zhang J, Zhu W, Radisic M, Vunjak-Novakovic G (2018) Can we engineer a human cardiac patch for therapy? Circ Res 123(2):244–265

    Article  Google Scholar 

  • Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12(6):295–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schneider, K.H., Rohringer, S., Holnthoner, W., Mühleder, S., Redl, H. (2021). Past and Future Prevascularization Strategies with Clinical Relevance: Leading to a Dual Approach. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-21056-8_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21056-8_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21056-8

  • Online ISBN: 978-3-319-21056-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics