Skip to main content

Advertisement

Log in

Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing’s sarcoma A673-xenograft growth and normalize tumor vascular architecture

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Increasing experimental evidence suggests that IGF-1 may modulate tumor angiogenesis via activation of the expression of VEGF in Ewing sarcomas and rhabdomyosarcomas. This study investigates the effects of the PEGylated Adnectins™ CT-322, a VEGFR2-inhibitor and AT580Peg40, an IGF-1R inhibitor, as monotherapy and in combination in a murine A673 xenograft tumor model. The combination of Adnectins CT-322 and AT580Peg40 revealed a 83 % reduction in tumor growth, a nearly 5 times lower vessel density, less necrotic areas and less appearance of intussusceptive angiogenesis. Monotherapy with IGF-1R or CT-322 revealed equally a significant inhibition of tumor and vessel growth. Combinatory inhibition of IGF-1R and VEGFR2 shows a downregulation of IGF-binding protein 2 and a compensatory upregulation of VEGF levels. Immunohistological analysis showed remodeling vascular effects of CT-322-treatment or combination therapy. The vascular architecture in Adnectin-treated tumors was characterized by a strong normalization of vasculature. 3D-evaluation in microvascular corrosion casts showed significantly higher intervascular and interbranching distances in Adnectin-treated tumors. CT-322-treatment and combinatory inhibition reveal a significant reduction of intussusceptive angiogenesis. These pronounced effects on tumor vasculature suggest potential therapeutic benefit of combinatorial IGF1- and VEGF- pathways inhibition in Ewing’s sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VEGF:

Vascular endothelial growth factor

IGFBP:

Insulin-like growth factor binding protein

MVD:

Microvessel density

References

  1. Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L, Francesconi M, Mercuri M, Caccuri AM, Serra M, Knuutila S, Picci P (2009) Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27(13):2209–2216 (Epub 2009 Mar 23)

    Article  PubMed  CAS  Google Scholar 

  2. Miser JS, Goldsby RE, Chen Z, Krailo MD, Tarbell NJ, Link MP, Fryer CJ, Pritchard DJ, Gebhardt MC, Dickman PS, Perlman EJ, Meyers PA, Donaldson SS, Moore SG, Rausen AR, Vietti TJ, Grier HE (2007) Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy-a report from the Children’s Oncology Group. Pediatr Blood Cancer 49(7):894–900

    Article  PubMed  Google Scholar 

  3. Subbiah V, Anderson P, Lazar AJ, Burdett E, Raymond K, Ludwig JA (2009) Ewing’s sarcoma: standard and experimental treatment options. Curr Treat Options Oncol 10(1–2):126–140 (Epub 2009 Jun 17)

    Article  PubMed  Google Scholar 

  4. Kelleher FC, Thomas DM (2012) Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours. Clin Sarcoma Res 2(1):6

    Article  PubMed  CAS  Google Scholar 

  5. Bolontrade MF, Zhou RR, Kleinerman ES (2002) Vasculogenesis plays a role in the growth of Ewing’s sarcoma in vivo. Clin Cancer Res 8(11):3622–3627

    PubMed  Google Scholar 

  6. Kreuter M, Paulussen M, Boeckeler J, Gerss J, Buerger H, Liebscher C, Kessler T, Jurgens H, Berdel WE, Mesters RM (2006) Clinical significance of vascular endothelial growth factor-A expression in Ewing’s sarcoma. Eur J Cancer 42(12):1904–1911 (Epub 2006 Jul 7)

    Article  PubMed  CAS  Google Scholar 

  7. Strammiello R, Benini S, Manara MC, Perdichizzi S, Serra M, Spisni E, Picci P, Scotlandi K (2003) Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing’s sarcoma cells. Horm Metab Res 35(11–12):675–684

    PubMed  CAS  Google Scholar 

  8. Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ (2009) The insulin-like growth factor-1 receptor-targeting antibody, CP-751, 871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69(19):7662–7671 (Epub 2009 Sep 29)

    Article  PubMed  CAS  Google Scholar 

  9. Tolcher AW, Sweeney CJ, Papadopoulos K, Patnaik A, Chiorean EG, Mita AC, Sankhala K, Furfine E, Gokemeijer J, Iacono L, Eaton C, Silver BA, Mita M (2011) Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin Cancer Res 17(2):363–371

    Article  PubMed  CAS  Google Scholar 

  10. Ackermann M, Carvajal IM, Morse BA, Moreta M, O’Neil S, Kossodo S, Peterson JD, Delventhal V, Marsh HN, Furfine ES, Konerding MA (2011) Adnectin CT-322 inhibits tumor growth and affects microvascular architecture and function in Colo205 tumor xenografts. Int J Oncol 38(1):71–80

    PubMed  CAS  Google Scholar 

  11. Emanuel SL, Engle LJ, Chao G, Zhu RR, Cao C, Lin Z, Yamniuk AP, Hosbach J, Brown J, Fitzpatrick E, Gokemeijer J, Morin P, Morse BA, Carvajal IM, Fabrizio D, Wright MC, Das Gupta R, Gosselin M, Cataldo D, Ryseck RP, Doyle ML, Wong TW, Camphausen RT, Cload ST, Marsh HN, Gottardis MM, Furfine ES (2011) A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. MAbs 3(1):38–48 (Epub 2011 Jan 1)

    Article  PubMed  Google Scholar 

  12. Kim SY, Toretsky JA, Scher D, Helman LJ (2009) The role of IGF-1R in pediatric malignancies. Oncologist 14(1):83–91 (Epub 2009 Jan 6)

    Article  PubMed  CAS  Google Scholar 

  13. Hlushchuk R, Riesterer O, Baum O, Wood J, Gruber G, Pruschy M, Djonov V (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173(4):1173–1185 (Epub 2008 Sep 11)

    Article  PubMed  CAS  Google Scholar 

  14. Weibel ER, Kistler GS, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30(1):23–38

    Article  PubMed  CAS  Google Scholar 

  15. Filipovic N, Tsuda A, Lee GS, Miele LF, Lin M, Konerding MA, Mentzer SJ (2009) Computational flow dynamics in a geometric model of intussusceptive angiogenesis. Microvasc Res 78(3):286–293

    Article  PubMed  CAS  Google Scholar 

  16. Zumkeller W (2001) IGFs and IGFBPs: surrogate markers for diagnosis and surveillance of tumour growth? Mol Pathol 54(5):285–288

    Article  PubMed  CAS  Google Scholar 

  17. Tombolan L, Orso F, Guzzardo V, Casara S, Zin A, Bonora M, Romualdi C, Giorgi C, Bisogno G, Alaggio R, Pinton P, De Pittà C, Taverna D, Rosolen A, Lanfranchi G (2011) High IGFBP2 expression correlates with tumor severity in pediatric rhabdomyosarcoma. Am J Pathol 179(5):2611–2624

    Article  PubMed  CAS  Google Scholar 

  18. DuBois SG, Marina N, Glade-Bender J (2010) Angiogenesis and vascular targeting in Ewing sarcoma: a review of preclinical and clinical data. Cancer 116(3):749–757

    Article  PubMed  Google Scholar 

  19. Bagley RG, Kurtzberg L, Weber W, Nguyen TH, Roth S, Krumbholz R, Yao M, Richards B, Zhang M, Pechan P, Schmid S, Scaria A, Kaplan J, Teicher BA (2011) sFLT01: a novel fusion protein with antiangiogenic activity. Mol Cancer Ther 10(3):404–415

    Article  PubMed  CAS  Google Scholar 

  20. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N (2000) Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60(22):6253–6258

    PubMed  CAS  Google Scholar 

  21. Dalal S, Berry AM, Cullinane CJ, Mangham DC, Grimer R, Lewis IJ, Johnston C, Laurence V, Burchill SA (2005) Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing’s sarcoma family. Clin Cancer Res 11(6):2364–2378

    Article  PubMed  CAS  Google Scholar 

  22. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736

    Article  PubMed  CAS  Google Scholar 

  23. Konerding MA, Turhan A, Ravnic DJ, Lin M, Fuchs C, Secomb TW, Tsuda A, Mentzer SJ (2010) Inflammation-induced intussusceptive angiogenesis in murine colitis. Anat Rec (Hoboken) 293(5):849–857

    Article  Google Scholar 

  24. Döme B, Hendrix MJ, Paku S, Tóvári J, Tímár J (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170(1):1–15

    Article  PubMed  Google Scholar 

  25. Wnuk M, Hlushchuk R, Tuffin G, Huynh-Do U, Djonov V (2011) The effects of PTK787/ZK222584, an inhibitor of VEGFR and PDGFRβ pathways, on intussusceptive angiogenesis and glomerular recovery from Thy1.1 nephritis. Am J Pathol 178(4):1899–1912

    Article  PubMed  CAS  Google Scholar 

  26. Scotlandi K, Manara MC, Serra M, Marino MT, Ventura S, Garofalo C, Alberghini M, Magagnoli G, Ferrari S, Lopez Guerrero JA, Llombard-Bosch A, Picci P (2011) Expression of insulin-like growth factor system components in Ewing’s sarcoma and their association with survival. Eur J Cancer 47(8):1258–1266 (Epub 2011 Feb 21)

    Article  PubMed  CAS  Google Scholar 

  27. Kim SY, Toretsky JA, Scher D, Helman LJ (2009) The role of IGF 1R in pediatric malignancies. Oncologist 14(1):83–91 (Epub 2009 Jan 6)

    Article  PubMed  CAS  Google Scholar 

  28. Hoeflich A, Reisinger R, Lahm H, Kiess W, Blum WF, Kolb HJ, Weber MM, Wolf E (2001) Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res 61(24):8601–8610

    PubMed  CAS  Google Scholar 

  29. Liou JM, Shun CT, Liang JT, Chiu HM, Chen MJ, Chen CC, Wang HP, Wu MS, Lin JT (2010) Plasma insulin-like growth factor binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer. J Clin Endocrinol Metab 95(4):1717–1725 (Epub 2010 Feb 15)

    Article  PubMed  CAS  Google Scholar 

  30. Huang F, Hurlburt W, Greer A, Reeves KA, Hillerman S, Chang H, Fargnoli J, Graf Finckenstein F, Gottardis MM, Carboni JM (2010) Differential mechanisms of acquired resistance to insulin-like growth factor-i receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Res 70(18):7221–7231 (Epub 2010 Aug 31)

    Article  PubMed  CAS  Google Scholar 

  31. Kolb EA, Gorlick R, Lock R, Carol H, Morton CL, Keir ST, Reynolds CP, Kang MH, Maris JM, Billups C, Smith MA, Houghton PJ (2011) Initial testing (stage 1) of the IGF-1 receptor inhibitor BMS-754807 by the pediatric preclinical testing program. Pediatr Blood Cancer 56(4):595–603. doi:10.1002/pbc.22741 (Epub 2010 Dec 22)

    Article  PubMed  Google Scholar 

  32. Litzenburger BC, Kim HJ, Kuiatse I, Carboni JM, Attar RM, Gottardis MM, Fairchild CR, Lee AV (2009) BMS-536924 reverses IGF-IR-induced transformation of mammary epithelial cells and causes growth inhibition and polarization of MCF7 cells. Clin Cancer Res 15(1):226–237

    Article  PubMed  CAS  Google Scholar 

  33. Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D (2010) Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 29(17):2517–2527 (Epub 2010 Feb 15)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Adnexus, A Bristol-Myers Squibb R&D Company, Waltham, MA. The authors thank Kerstin Bahr for her skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz A. Konerding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, M., Morse, B.A., Delventhal, V. et al. Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing’s sarcoma A673-xenograft growth and normalize tumor vascular architecture. Angiogenesis 15, 685–695 (2012). https://doi.org/10.1007/s10456-012-9294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9294-9

Keywords

Navigation