Skip to main content
Log in

Neck analysis of extrinsic polyharmonic maps

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove the energy identity and the no neck property for a sequence of smooth extrinsic polyharmonic maps with bounded total energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Angelsberg, G., Pumberger, D.: A regularity result for polyharmonic maps with higher integrability. Ann. Global Anal. Geom. 35(1), 63–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, S.-Y.A., Wang, L., Yang, P.C.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ding, W., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3(3–4), 543–554 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Comm. Anal. Geom. 17(2), 185–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  7. Goldstein, P., Strzelecki, P., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1387–1405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Hélein, F.: Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math. 70(2), 203–218 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hornung, P., Moser, R.: Energy identity for intrinsically biharmonic maps in four dimensions. Anal. PDE 5(1), 61–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jost, J.: Two-dimensional Geometric Variational Problems. Pure and Applied Mathematics (New York). Wiley, Chichester (1991)

    Google Scholar 

  12. Laurain, P., Rivière, T.: Energy quantization for biharmonic maps. Adv. Calc. Var. 6(2), 191–216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F., Wang, C.: Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differ. Equ. 6(4), 369–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, L., Yin, H.: Neck analysis for biharmonic maps. Math. Z. 283(3–4), 807–834 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moser, R.: Regularity of minimizing extrinsic polyharmonic maps in the critical dimension. Manuscripta Math. 131(3–4), 475–485 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parker, T.H.: Bubble tree convergence for harmonic maps. J. Differential Geom. 44(3), 595–633 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qing, J.: On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3(1–2), 297–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qing, J.: Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math. 50(4), 295–310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \(2\)-spheres. Ann. Math. (2) 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differential Equations 18(4), 401–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, C.: Bubble phenomena of certain Palais-Smale sequences from surfaces to general targets. Houston J. Math. 22(3), 559–590 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Wang, C.: Biharmonic maps from \(\mathbf{R}^4\) into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, C.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differential Equations 21(3), 221–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, C.: Energy identity of approximate biharmonic maps to Riemannian manifolds and its application. J. Funct. Anal. 263(4), 960–987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, C.: Energy identity for a class of approximate biharmonic maps into sphere in dimension four. Discrete Contin. Dyn. Syst. 33(2), 861–878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yin.

Additional information

The research work of Hao Yin is supported by NSFC 11471300.

Appendices

Appendix 1: \(\varepsilon \)-regularity

In this section we prove the \(\varepsilon \)-regularity theorem for (extrinsic) m-polyharmonic maps.

Theorem 4.2

(\(\varepsilon \)-regularity) Suppose \(u\in W^{2m,p}(B,N), p>1\), is an m-polyharmonic map from the unit ball \(B\subset \mathbb {R}^{2m}\) to a compact Riemannian manifold N isometrically embedded into \(\mathbb {R}^K\). There exists \(\varepsilon _0>0\) such that if

$$\begin{aligned} E(u;B)\mathpunct {:}=\frac{1}{2}\int _{B}\left( |\nabla ^mu|^2+|\nabla u|^{2m}\right) \le \varepsilon _0, \end{aligned}$$

then for some constant C,

$$\begin{aligned} \Vert u-{\bar{u}}\Vert _{W^{2m,p}(B_{1/2})}&\le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) , \end{aligned}$$
(4.12)

and for \(l=1,2,\ldots \),

$$\begin{aligned} \Vert \nabla ^lu\Vert _{L^\infty (B_{1/2})}&\le C(l)\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) , \end{aligned}$$
(4.13)

where \({\bar{u}}\) is the integral mean of u over \(B\subset \mathbb {R}^{2m}\) and \(C, \left\{ C(l)\right\} \) are constants.

Remark

We will show that the Sobolev norm \(\Vert u\Vert _{W^{m,2}(B)}\) can be controlled by E(uB) provided that \({\bar{u}}=0\). In fact, since \(u\in W^{2m,p}(B)\hookrightarrow W^{m,2}(B)\) and N is compact, we know that \(u-{\bar{u}}\in W^{m,2}(B)\). The interpolation inequality (see [1, Lemma 5.2(1)]) applied to \(u-{\bar{u}}\) gives

$$\begin{aligned} \Vert \nabla ^ju\Vert _{L^2(B)}\le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert u-{\bar{u}}\Vert _{L^{2}(B)}\right) ,\quad \forall 1<j\le m. \end{aligned}$$

Combining it with Poincaré inequality

$$\begin{aligned} \Vert u-{\bar{u}}\Vert _{L^2(B)}\le C\Vert \nabla u\Vert _{L^2(B)}, \end{aligned}$$

we obtain

$$\begin{aligned} \begin{aligned} \Vert \nabla ^ju\Vert _{L^2(B)}&\le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^2(B)}\right) \\&\le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) ,\quad \forall 1<j\le m. \end{aligned} \end{aligned}$$
(4.14)

If in addition, we assume that \({\bar{u}}=0\), then the Poincaré inequality reads

$$\begin{aligned} \Vert u\Vert _{L^2(B)}\le C\Vert \nabla u\Vert _{L^2(B)}, \end{aligned}$$

and

$$\begin{aligned} \Vert u\Vert _{W^{m,2}(B)}^2=\sum _{j=0}^{m}\Vert \nabla ^ju\Vert _{L^2(B)}^2\le C\sum _{j=1}^m\Vert \nabla ^ju\Vert _{L^2(B)}^2. \end{aligned}$$

Since (4.14) holds trivially for \(j=1\), we conclude that

$$\begin{aligned} \Vert u\Vert _{W^{m,2}(B)}\le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) , \end{aligned}$$
(4.15)

provided that \({\bar{u}}=0\).

Proof

Without loss of generality, we may assume that \({\bar{u}}=0\). Since u is an (extrinsic) m-polyharmonic map, it satisfies the following Euler–Lagrange equation (see [2, Lemma 2.2, (4)])

$$\begin{aligned} \Delta ^mu=\sum _{\begin{array}{c} i,j,q\ge 0\\ i+j+q=m-1\\ (i,j,q)\ne (0,m-1,0) \end{array}}c_{ijq}^{m-1}\Delta ^i\nabla ^q(P(u))\Delta ^{j+1}\nabla ^qu -\Delta ^{m-1}(A(u)(\nabla u,\nabla u)),\qquad \end{aligned}$$
(4.16)

where \(c_{ijq}^m\) are positive integers, \(P(u)=D\Pi (u)\) is the orthonormal projection defined by the differential of the nearest projection map \(\Pi :N_\delta \rightarrow N, N_\delta \subset \mathbb {R}^K\) is a neighborhood of N and A(u) is the second fundamental form of \(N\hookrightarrow \mathbb {R}^K\) at u.

For a multi-index \(\alpha =(k_1,k_2,\ldots , k_a)\), where \(k_i\ge 1\) are integers for \(i=1,2,\ldots ,a\), the norm of \(\alpha \) is defined to be \(|\alpha |\mathpunct {:}=\sum _{i=1}^ak_i\) and a is called the length of \(\alpha \). We can rewrite (4.16) as

$$\begin{aligned} \Delta ^mu=\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}a_\alpha (u)\nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u, \end{aligned}$$
(4.17)

where \(a_\alpha \) are smooth functions on N. Moreover, we may assume that \(k_1\ge k_2\ge \cdots k_a\ge 1\) in (4.17). In particular, \(1\le k_1\le 2m-1\) and \(k_2\le m\).

Now, for fixed \(\sigma \in (1/2,1)\), let \(2\sigma '=1+\sigma \) and \(\phi \in C_0^\infty (B_{\sigma '})\) be a cutoff function satisfying

$$\begin{aligned} \phi |_{B_\sigma }\equiv 1\quad \text {and} \quad |\nabla ^k\phi |\le 4^k(1-\sigma )^{-k},\qquad k=0,1,2,\ldots . \end{aligned}$$

In order to apply \(L^p\)-estimates to \(\phi u\), we compute the equation of \(\phi u\) as follows

$$\begin{aligned}&\Delta ^m(\phi u)-\sum _{i=1}^{2m}\nabla ^i\phi \#\nabla ^{2m-i}u =\phi \Delta ^mu=\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\phi a_\alpha (u) \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u \\&\qquad =\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}a_\alpha (u)\left[ \nabla ^{k_1}(\phi u)-\sum _{j=1}^{k_1}\left( {\begin{array}{c}k_1\\ j\end{array}}\right) \nabla ^{j}\phi \nabla ^{k_1-j}u\right] \#\cdots \#\nabla ^{k_a}u\\&\qquad =\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}a_\alpha (u)\nabla ^{k_1}(\phi u)\#\cdots \#\nabla ^{k_a}u+\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\sum _{j=1}^{k_1}a_\alpha (u)\nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\cdots \#\nabla ^{k_a}u. \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} \Delta ^m(\phi u)&=\sum _{i=1}^{2m}\nabla ^i\phi \#\nabla ^{2m-i}u+\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}a_\alpha (u)\nabla ^{k_1}(\phi u)\#\cdots \#\nabla ^{k_a}u\\&\qquad +\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\sum _{j=1}^{k_1}a_\alpha (u)\nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\cdots \#\nabla ^{k_a}u. \end{aligned} \end{aligned}$$
(4.18)

Next, for \(1<p<\frac{2m}{2m-1}\), we estimate the \(L^p(B)\) norm of the terms at the right-hand side of (4.18) one by one. For the first term, by the definition of \(\phi \),

$$\begin{aligned} \Vert \nabla ^i\phi \#\nabla ^{2m-i}u\Vert _{L^p(B)}\le C(1-\sigma )^{-i}\Vert \nabla ^{2m-i}u\Vert _{L^p(B_{\sigma '})},\quad 1\le i\le 2m. \end{aligned}$$

For the second term, by generalized Hölder inequality,

$$\begin{aligned} \Vert \nabla ^{k_1}(\phi u)\#\cdots \#\nabla ^{k_a}u\Vert _{L^p(B)}&\le C\Vert \nabla ^{k_1}(\phi u)\Vert _{L^{\frac{2mp}{2m-(2m-k_1)p}}(B)}\prod _{i=2}^a\Vert \nabla ^{k_i}u\Vert _{L^{\frac{2m}{k_i}}(B)}\nonumber \\&\le C\Vert \phi u\Vert _{W^{2m,p}(B)}\prod _{i=2}^a\Vert u\Vert _{W^{m,2}(B)}, \end{aligned}$$
(4.19)

where in the last inequality, we have used the following Sobolev embedding

$$\begin{aligned} W^{2m,p}\hookrightarrow W^{k_1,2mp/(2m-(2m-k_1)p)}\quad \text {and} \quad W^{m,2}\hookrightarrow W^{k,2m/k},\quad 1\le k\le m. \end{aligned}$$

The estimate of the last term is obtained by different methods for different values of \(k_1\) and j.

  • If \(j=k_1\), exploiting the boundedness of u and by Sobolev inequalities (see 4.19), we obtain

    $$\begin{aligned}&\Vert \nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^p(B)}\\&\qquad \le C(1-\sigma )^{-k_1}\Vert u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^p(B)}\\&\qquad \le C(1-\sigma )^{-k_1}\Vert u\Vert _{W^{m,2}(B)}^{a-1}. \end{aligned}$$
  • If \(\max \left\{ 1,k_1-j\right\} \le j<k_1(<2m)\), then by the definition of \(\phi \),

    $$\begin{aligned}&\Vert \nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{p}(B)}\\&\qquad \le C(1-\sigma )^{-j}\Vert \nabla ^{k_1-j}u\Vert _{L^{\frac{2m}{k_1-j}}(B_{\sigma '})}\prod _{i=2}^a\Vert \nabla ^{k_i}u\Vert _{L^{\frac{2m}{k_i}}(B_{\sigma '})}\\&\qquad \le C(1-\sigma )^{-j}\Vert u\Vert _{W^{m,2}(B)}^{a}. \end{aligned}$$
  • If \(1\le j<k_1-m\), then

    $$\begin{aligned}&\Vert \nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{p}(B)}\\&\qquad \le C(1-\sigma )^{-j}\Vert \nabla ^{k_1-j}u\Vert _{L^{\frac{2mp}{2m-(2m-k_1)p}}(B_{\sigma '})}\prod _{i=2}^a\Vert \nabla ^{k_i}u\Vert _{L^{\frac{2m}{k_i}}(B_{\sigma '})}\\&\qquad \le C(1-\sigma )^{-j}\Vert u\Vert _{W^{2m-j,p}(B_{\sigma '})}\Vert u\Vert _{W^{m,2}(B)}^{a-1}. \end{aligned}$$

    By the interpolation inequality (see [1, Thm. 5.2(1)])

    $$\begin{aligned} \Vert u\Vert _{W^{2m-j,p}(B_{\sigma '})}\le C\left( \Vert \nabla ^{2m-j}u\Vert _{L^{p}(B_{\sigma '})}+\Vert u\Vert _{L^p(B_{\sigma '})}\right) , \end{aligned}$$

    and the boundedness of \(\Vert u\Vert _{L^p(B)}\), we conclude that

    $$\begin{aligned}&\Vert \nabla ^{j}\phi \#\nabla ^{k_1-j}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{p}(B)}\\&\quad \le C(1-\sigma )^{-j}\Vert \nabla ^{2m-j}u\Vert _{L^p(B_{\sigma '})}\Vert u\Vert _{W^{m,2}(B)}^{a-1}+C(1-\sigma )^{-j}\Vert u\Vert _{W^{m,2}(B)}^{a-1}. \end{aligned}$$

With the \(L^p\) bound of the right-hand side of (4.18) obtained as above, we can apply the \(L^p\) estimate to (4.18) to conclude

$$\begin{aligned} \begin{aligned} \Vert \nabla ^{2m}(\phi u)\Vert _{L^p(B)}\le&\, C\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\Bigg \{ \sum _{j=\max \left\{ k_1-m,1\right\} }^{k_1}(1-\sigma )^{-j}\Vert u\Vert _{W^{m,2}(B)}^{a-1}\\&+\sum _{j=1}^{k_1-m-1}(1-\sigma )^{-j}\Vert u\Vert _{W^{m,2}(B)}^{a-1}\\&+\sum _{j=1}^{k_1-m-1}(1-\sigma )^{-j}\Vert \nabla ^{2m-j}u\Vert _{L^p(B_{\sigma '})}\Vert u\Vert _{W^{m,2}(B)}^{a-1} \Bigg \}\\&+C\sum _{i=1}^{2m}(1-\sigma )^{-i}\Vert \nabla ^{2m-i}u\Vert _{L^p(B_{\sigma '})}. \end{aligned} \end{aligned}$$
(4.20)

Here we have used the small energy condition in Theorem 4.2, which by (4.15) implies that \(||u||_{W^{m,2}(B)}\) is small so that the second term in (4.18) are absorbed into the left-hand side.

(4.20) can be further simplified as

$$\begin{aligned} \Vert \nabla ^{2m}u\Vert _{L^p(B_{\sigma })}\le C\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\sum _{j=1}^{2m}\bigg \{ \Vert u\Vert _{W^{m,2}(B)}^{a-1} +\left( 1+\Vert u\Vert _{W^{m,2}(B)}^{a-1}\right) \Vert \nabla ^{2m-j}u\Vert _{L^p(B_{\sigma '})} \bigg \}(1-\sigma )^{-j}. \nonumber \\ \end{aligned}$$
(4.21)

By setting

$$\begin{aligned} \Phi _j\mathpunct {:}=\sup _{1/2\le \sigma \le 1}(1-\sigma )^j\Vert \nabla ^{j}u\Vert _{L^p(B_\sigma )}, \quad j=0,1,\ldots ,2m, \end{aligned}$$

and noting that \(1-\sigma =2(1-\sigma ')\), (4.21) implies

$$\begin{aligned} \Phi _{2m}\le C\sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}}\sum _{l=0}^{2m-1}\bigg \{ \Vert u\Vert _{W^{m,2}(B)}^{a-1} +\left( 1+\Vert u\Vert _{W^{m,2}(B)}^{a-1}\right) \Phi _l\bigg \}. \end{aligned}$$
(4.22)

Now, we need the following

Claim

(c.f. [6, Thm. 7.27, p. 171ff.]) There exists some constant \(C_0\), such that for any \({\bar{\varepsilon }}\le C_0\),

$$\begin{aligned} \Phi _j\le {\bar{\varepsilon }}\Phi _{2m}+C{\bar{\varepsilon }}^{-\frac{j}{2m-j}}\Phi _0,\quad \forall 0\le j\le 2m-1, \end{aligned}$$

holds for some constant C depending on mj and \(C_0\).

In fact, by the definition of \(\Phi _j\), for any \(s>0\), there exists \(\sigma _s\in [1/2,1)\), such that

$$\begin{aligned} \Phi _j\le (1-\sigma _s)^j\Vert \nabla ^ju\Vert _{L^p(B_{\sigma _s})}+s. \end{aligned}$$

For any \(u\in W^{2m,p}(\Omega )\), by interpolation inequality (see [1, Theorem 5.2(1)]), there exists a constant \(C_0>0\), such that, for all \(\varepsilon \le 1\) and any \(j=0,1,\ldots ,2m-1\),

$$\begin{aligned} \Vert \nabla ^ju\Vert _{L^p(\Omega )}\le C_0\left( \varepsilon \Vert \nabla ^{2m}u\Vert _{L^p(\Omega )}+\varepsilon ^{-\frac{j}{2m-j}}\Vert u\Vert _{L^p(\Omega )}\right) . \end{aligned}$$

Thus,

$$\begin{aligned} \Phi _j&\le C_0\left( \varepsilon (1-\sigma _s)^j\Vert \nabla ^{2m}u\Vert _{L^p(B_{\sigma _s})}+\varepsilon ^{-\frac{j}{2m-j}}(1-\sigma _s)^j\Vert u\Vert _{L^p(B_{\sigma _s})}\right) +s\\&\le \varepsilon _s\Phi _{2m}+C_0^{1+\frac{j}{2m-j}}(\varepsilon _s)^{-\frac{j}{2m-j}}\Phi _0+s, \end{aligned}$$

where \(\varepsilon _s=C_0\varepsilon (1-\sigma _s)^{j-2m}\).

Lastly, for any \({\bar{\varepsilon }}\le C_0\) and any fixed \(s>0\) one can take \(\varepsilon ={\bar{\varepsilon }}(1-\sigma _s)^{2m-j}/C_0\le 1\), then \(\varepsilon _s={\bar{\varepsilon }}\) and the claim follows by taking \(s\rightarrow 0\).

Note that (4.15) implies that \(\Vert u\Vert _{W^{m,2}(B)}\) are bounded by \(E(u;B)\le \varepsilon _0\), which is small by assumption. Applying the claim to (4.22) with small \({\bar{\varepsilon }}\) yields

$$\begin{aligned} \Phi _{2m}\le C\left( \Phi _0+\Vert u\Vert _{W^{m,2}(B)}\right) \le C\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) , \end{aligned}$$
(4.23)

where the last inequality follows from the assumption \({\bar{u}}=0\), the smallness of \(\varepsilon _0\) and (4.15). By (4.23) and the interpolation inequality again, we conclude that, for \(p=\frac{2m+1}{2m}\in \left( 1,\frac{2m}{2m-1}\right) \),

$$\begin{aligned} \Vert u\Vert _{W^{2m,p}(B_\sigma )}\le C(1-\sigma )^{-2m}\left( \Vert \nabla ^mu\Vert _{L^2(B)}+\Vert \nabla u\Vert _{L^{2m}(B)}\right) . \end{aligned}$$
(4.24)

We will finish the proof by a bootstrap argument. Let us start with \(p_0=\frac{2m+1}{2m}<\frac{2m}{2m-1}\). (4.24) implies that (4.12) holds for \(p=p_0\).

By the Sobolev embedding \(W^{2m,p_0}\hookrightarrow W^{l,\frac{2mp_0}{2m-(2m-l)p_0}}\) and the Hölder inequality,

$$\begin{aligned} \Vert \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{\frac{1}{1-a(1-1/p_0)}}}&\le C\prod _{i=1}^a\Vert \nabla ^{k_i}u\Vert _{L^{\frac{2mp_0}{2m-(2m-k_i)p_0}}}\\&\le C\Vert u\Vert _{W^{2m,p_0}}^a. \end{aligned}$$

Since \(a\ge 2\), we know that

$$\begin{aligned} \frac{1}{1-a\left( 1-\frac{1}{p_0}\right) }\ge \frac{p_0}{2-p_0}=\frac{2m+1}{2m-1}>p_1\mathpunct {:}=\frac{2m}{2m-1}, \end{aligned}$$
(4.25)

thus

$$\begin{aligned} \Vert \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{p_1}} \le C \Vert u\Vert _{W^{2m,p_0}}^a \end{aligned}$$
(4.26)

In summary, \(L^{p_1}\) norm of the right-hand side of (4.17) is bounded by \(\Vert u\Vert _{W^{2m,p_0}}\), which implies that (4.12) holds for \(p_1\).

Next we do the iteration

$$\begin{aligned} p_{i+1}=\frac{1}{\frac{1}{p_i}-\frac{1}{2m}}=\frac{2m}{2m-i-1},\quad i=1,2,\ldots ,2m-2, \end{aligned}$$

and show that (4.26) holds with \(p_0\) and \(p_1\) replaced by \(p_i\) and \(p_{i+1}\), respectively. Thus, the \(L^p\)-estimate implies that (4.12) holds for \(p_{i+1}\).

Note that (4.26) holds for \(p_1+\delta _1\), where \(\delta _1\) is sufficiently small (see (4.25)). For technical reasons, we will prove the following: Suppose for all \(\alpha \) with \(|\alpha |=2m\,\text {and}\,\alpha \ne (2m)\),

$$\begin{aligned} \Vert \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^{p_{i+1}+\delta _{i+1}}}\le C\Vert u\Vert _{W^{2m,p_i+\delta _i}}^a, \end{aligned}$$
(4.27)

holds for \(i=l\in \left\{ 1,2,\ldots ,2m-3\right\} \) and some \(\delta _i>0\), we will show that it also holds for \(i=l+1\) and some \(\delta _{i+1}\). The exact value of \(\left\{ \delta _i\right\} \) does not matter and we only require that they are positive such that (4.28) holds. Choose \(\delta _{l}\) sufficiently small, such that

$$\begin{aligned} W^{2m,{\bar{p}}_l}&\hookrightarrow W^{h,\infty },\quad \forall h=0,1,\ldots ,l,\end{aligned}$$
(4.28)
$$\begin{aligned} W^{2m,{\bar{p}}_l}&\hookrightarrow W^{h,\frac{2m{\bar{p}}_l}{2m-(2m-l){\bar{p}}_l}},\quad \forall h=l+1,\ldots ,2m, \end{aligned}$$
(4.29)

where \({\bar{p}}_l=p_l+\delta _l\). To illustrate the idea, let us assume that the multi-indices \(\alpha \) in (4.27) satisfy

$$\begin{aligned} k_1\ge k_2\ge \cdots \ge k_{a-j_1-j_2\cdots -j_l}&>k_{a-j_1-j_2\cdots -j_l+1}=\cdots =k_{a-j_1-j_2\cdots -j_{l-1}}=l\\&>\cdots \\&>k_{a-j_1-j_2+1}=\cdots =k_{a-j_1}=2\\&>k_{a-j_1+1}=\cdots =k_{a}=1. \end{aligned}$$

Setting \(j=j_1+j_2\cdots +j_{l}\), by Hölder and Sobolev inequality

$$\begin{aligned}&\Vert \nabla ^{k_1}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^p}\\&\qquad \le C\Vert \nabla ^{k_1}u\#\cdots \#\nabla ^{k_{a-j}}u\Vert _{L^p} \prod _{h=1}^{j_{l}}\Vert \nabla ^{k_{a-j+h}}u\Vert _{L^\infty }\cdots \prod _{h=1}^{j_1}\Vert \nabla ^{k_{a-j_1+h}}u\Vert _{L^\infty }\\&\qquad \le C\Vert u\Vert _{W^{2m, {\bar{p}}_l}}^{j} \prod _{h=1}^{a-j}\Vert \nabla ^{k_h}u\Vert _{L^{\frac{2m{\bar{p}}_l}{2m-(2m-k_h){\bar{p}}_l}}},\quad \text {(by (5.17))}\\&\qquad \le C\Vert u\Vert _{W^{2m,{\bar{p}}_l}}^a,\quad \text {(by (5.18))} \end{aligned}$$

where

$$\begin{aligned} p\le \frac{1}{1-(a-j)\left( 1-\frac{1}{{\bar{p}}_l} \right) -\frac{j_1+2j_2+\cdots +lj_l}{2m}} \end{aligned}$$

which attains its minimum at \(j_l=\cdots =j_2=0, j_1=1, a=2\), i.e.,

$$\begin{aligned} p\ge \frac{1}{\frac{1}{{\bar{p}}_l}-\frac{1}{2m}}\mathpunct {:}={\bar{p}}_{l+1}>p_{l+1}. \end{aligned}$$

Therefore, (4.24) holds for \(i=l+1\).

As a conclusion of the above iteration, we have shown that (4.12) holds for some \({\bar{p}}>2m=p_{2m-1}\). Now for general \(p>1\), note that

$$\begin{aligned} W^{2m,{\bar{p}}}\hookrightarrow W^{h,\infty },\quad \forall h=0,1,\ldots ,2m-1. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^p}&\le C\Vert \nabla ^{k_1}u\#\nabla ^{k_2}u\#\cdots \#\nabla ^{k_a}u\Vert _{L^\infty } \le C\Vert u\Vert _{W^{2m,{\bar{p}}}}^a, \end{aligned}$$

which implies that (4.12) holds for p and we finish the first part of Theorem 4.2.

Finally, (4.13) follows from (4.12) and the standard bootstrap argument. \(\square \)

Appendix 2: Linearized polyharmonic map equation and some higher order estimates

In Sects. 3 and  4, by using either the three-circle lemma (Lemma 2.1) or the Pohozaev-type argument, we have proved the decay of the \(L^2\) norm of some derivative of \(u_i\) (\(X_k u_i\) and \(\partial _t u_i\), respectively) along the neck. In this section, we provide a lemma which improves the decay of \(L^2\) norm to the decay of pointwise higher order norm. The key to the proof is the observation that \(X_k u_i\) and \(\partial _t u_i=\rho \partial _\rho u_i\) satisfy a homogeneous linear elliptic system with nice coefficients.

Let u be a smooth polyharmonic map defined on \(B_4{\setminus } B_1\). Recall the Euler–Lagrange equation reads

$$\begin{aligned} \Delta ^m u = \sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}} a_\alpha (u) \nabla ^{k_1} u \# \cdots \# \nabla ^{k_a}u. \end{aligned}$$

Moreover, we assume that

$$\begin{aligned} \max _{B_4{\setminus } B_1} \left| \nabla ^l u\right| \le 1,\quad \forall l=1,2,\ldots ,2m-1, \end{aligned}$$
(4.30)

which holds for each segment of neck due to the Ding-Tian’s reduction (see [4]) and \(\varepsilon \)-regularity theorem (Theorem 4.2).

Lemma 4.3

Suppose u is a polyharmonic map defined on \(B_4{\setminus } B_1\) satisfying (4.30) as above. Then,

$$\begin{aligned} \max _{B_3{\setminus } B_2} \left| \nabla ^l ( (\rho \partial _\rho ) u)\right| ^2 \le C \int _{B_4{\setminus } B_1} \left| \rho \partial _\rho u\right| ^2 \mathrm{d}x \end{aligned}$$
(4.31)

and

$$\begin{aligned} \max _{B_3{\setminus } B_2} \left| \nabla ^l ( X_k u)\right| ^2 \le C \int _{B_4{\setminus } B_1} \left| X_k u\right| ^2 \mathrm{d}x \end{aligned}$$
(4.32)

for \(k=1,2,\cdots ,m(2m-1)\).

Proof

The proof follows from well-known elliptic estimates if we can show that \(X_ku\) and \((\rho \partial _\rho ) u\) satisfy a nice linear equation so that we can apply linear estimates.

We make use of the fact that the polyharmonic map equation is invariant under the one parameter group generated by \(\rho \partial _\rho \) or any one of the Killing vector fields \(\left\{ X_k\right\} \). More precisely, let \(\psi _s\) be such a one parameter group and \(u_s= u\circ \psi _s\). If u is m-polyharmonic map, then so is \(u_s\). Therefore, \(u_s\) satisfies (c.f. (4.16))

$$\begin{aligned} \Delta ^m u_s = \sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}} a_\alpha (u_s) \nabla ^{k_1} u_s \# \cdots \# \nabla ^{k_a} u_s. \end{aligned}$$

Taking s-derivative at \(s=0\) and denoting \(\frac{du_s}{ds}|_{s=0}\) by h gives

$$\begin{aligned} \Delta ^m h= & {} \sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}} D a_\alpha (u) \nabla ^{k_1} u \# \cdots \# \nabla ^{k_a} u \cdot h \\&+ \sum _{\mathop {\alpha \ne (2m)}\limits ^{|\alpha |=2m}} a_\alpha (u) \left( \nabla ^{k_1} h \# \cdots \# \nabla ^{k_a} u + \cdots + \nabla ^{k_1} u \# \cdots \# \nabla ^{k_a}h \right) . \end{aligned}$$

This is a linear elliptic system of h, whose coefficients are all good by (4.30).

Finally, we notice that h can be either \( (\rho \partial _\rho ) u\) or \(X_ku\) in the above computation, depending on the choice of the one parameter group \(\psi _s\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W., Yin, H. Neck analysis of extrinsic polyharmonic maps. Ann Glob Anal Geom 52, 129–156 (2017). https://doi.org/10.1007/s10455-017-9551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-017-9551-7

Keywords

Mathematics Subject Classification

Navigation