Skip to main content
Log in

Darboux transforms and spectral curves of constant mean curvature surfaces revisited

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We study the geometric properties of Darboux transforms of constant mean curvature (CMC) surfaces and use these transforms to obtain an algebro-geometric representation of constant mean curvature tori. We find that the space of all Darboux transforms of a CMC torus has a natural subset which is an algebraic curve (called the spectral curve) and that all Darboux transforms represented by points on the spectral curve are themselves CMC tori. The spectral curve obtained using Darboux transforms is not bi-rational to, but has the same normalisation as, the spectral curve obtained using a more traditional integrable systems approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein H.: Non-special, non-canal isothermic tori with spherical lines of curvature. Trans. Amer. Math. Soc. 353, 2245–2274 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobenko A.I.: All constant mean curvature tori in R 3, S 3 and H 3 in terms of theta-functions. Math. Ann. 290(2), 209–245 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohle, C.: Constrained Willmore tori in the 4-sphere. arXiv:0803.0633v1

  4. Bohle, C., Leschke, K., Pedit, F., Pinkall, U.: (2007) Conformal maps from a 2-torus to the 4-sphere. J. Reine Angew. Math. doi:10.1515/crelle.2011.156

  5. Bohle C., Pedit F., Pinkall U.: The spectral curve of a quaternionic holomorphic line bundle over a 2-torus. Manuscripta Math. 130(3), 311–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in S 4 and quaternions, Lecture Notes in Mathematics, Springer, Berlin (2002)

  7. Darboux G.: Sur les surfaces isothermiques. C. R. Acad. Sci. Paris 128, 1299–1305 (1899)

    MATH  Google Scholar 

  8. Ercolani, N.M., Knörrer, H., Trubowitz, E.: Hyperelliptic curves that generate constant mean curvature tori in \({\mathbb{R}^3}\) . Integrable systems (Luminy 1991), Progr. Math. 115 81–114 (1993)

  9. Ferus D., Leschke K., Pedit F., Pinkall U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146, 507–593 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Große-Brauckmann, K., Kusner, R.B., Sullivan, J.M.: Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero. J. Reine Angew. Math. 564, 35–61 (2003). arXiv:math/0102183

    Google Scholar 

  11. Hertrich-Jeromin, U.: Introduction to Möbius differential geometry. London Mathematical Society Lecture Note Series 300. Cambridge University Press, Cambridge (2003)

  12. Hertrich-Jeromin U., Pedit F.: Remarks on the Darboux transform of isothermic surfaces. Doc. Math. 2, 313–333 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Hitchin N.: Harmonic maps from a 2-torus to the 3-sphere. J. Differential Geom. 31, 627–710 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Jaggy C.: On the classification of constant mean curvature tori in R 3. Comment. Math. Helv. 69(4), 640–658 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kapouleas N.: Compact constant mean curvature surfaces in euclidean three-space. J. Differential Geom. 33(3), 683–715 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Leschke, K.: Transformations on Willmore surfaces, Habilitationsschrift, Universität Augsburg, Augsburg (2006)

  17. Leschke, K.: Families of conformal tori of revolution in the 3-sphere. In: Ohnita, Y. (ed.) Proceedings of the 16th OCU International Academic Symposium 2008. Riemann Surfaces, Harmonic Maps and Visualization. OCAMI Studies, vol. 3, pp. 91–103. (2009) arXiv:0909.3965

  18. Leschke, K., Romon, P.: Spectral curve of Hamiltonian stationary tori. Calc. Var. Partial Differential Equations 38(1–2), 45–74 (2010). arXiv:0806.1848

    Google Scholar 

  19. Mazzeo, R., Pacard, F.: Constant mean curvature surfaces with Delaunay ends. Comm. Anal. Geom. 9(1), 169–237 (2001). arXiv:math/9807039

    Google Scholar 

  20. Pinkall U., Sterling I.: On the classification of constant mean curvature tori. Ann. of Math. 130(2), 407–451 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pohlmeyer K.: Integrable Hamiltonian systems and interactions through quadratic constraints. Comm. Math. Phys. 46, 207–221 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruh E., Vilms J.: The tension field of the Gauss map. Trans. Amer. Math. Soc. 149, 569–573 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmidt, M.: A proof of the Willmore conjecture (2002). arxiv:0203224

  24. Sterling I., Wente H.: Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J. 42, 1239–1266 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taimanov, I.: The Weierstrass representation of spheres in \({\mathbb{R}^3}\) , the Willmore numbers, and soliton spheres. Proc. Steklov Inst. Math 225, 322–343 (1999). arXiv:math/9801022

  26. Uhlenbeck K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differential Geom. 30(1), 1–50 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Wente Henry C.: Counterexample to a conjecture of H. Hopf. Pacific J. Math. 121(1), 193–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carberry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carberry, E., Leschke, K. & Pedit, F. Darboux transforms and spectral curves of constant mean curvature surfaces revisited. Ann Glob Anal Geom 43, 299–329 (2013). https://doi.org/10.1007/s10455-012-9347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-012-9347-8

Keywords

Navigation