Skip to main content
Log in

The complex Monge–Ampère equation, Zoll metrics and algebraization

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let M be a real analytic Riemannian manifold. An adapted complex structure on TM is a complex structure on a neighborhood of the zero section such that the leaves of the Riemann foliation are complex submanifolds. This structure is called entire if it may be extended to the whole of TM. We prove here that the only real analytic Zoll metric on the n-sphere with an entire adapted complex structure on TM is the round sphere. Using similar ideas, we answer a special case of an algebraization question raised by the first author, characterizing some Stein manifolds as affine algebraic in terms of plurisubharmonic exhaustion functions satisfying the homogeneous complex Monge–Ampère equation. The result presented here is an extension to higher dimensions of an observation attributed to W. Stoll for the case of Riemann surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audin, M.: Lagrangian skeletons, periodic geodesic flows and symplectic cuttings. Manuscr. Math. 124(4), 533–550 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Kalka, M.: Foliations and complex Monge–Ampère equations. Commun. Pure Appl. Math. 90(5), 543–571 (1977)

    Article  MATH  Google Scholar 

  3. Besse, A.L.: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93. Springer, Berlin (1978). With appendices by D.B.A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J.L. Kazdan

  4. Burns, D.: Curvatures of Monge–Ampère foliations and parabolic manifolds. Ann. Math. (2) 115(2), 349–373 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burns, D.: Les équations de Monge–Ampère homogènes, et des exhaustions spéciales de variétés affines. In: Goulaouic–Meyer–Schwartz seminar, 1983–1984, pp. Exp. No. 4, 10. École Polytech., Palaiseau (1984)

  6. Demailly, J.P.: Mesures de Monge–Ampr̀e et caractérisation géométrique des variétés algébriques affines. No. 19 in Mém. Soc. Math. France (N.S.). Société Mathématique de France (1985)

  7. Griffiths, P., King, J.: Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math. 130, 145–220 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guillemin, V.: The Radon transform on Zoll surfaces. Adv. Math. 22(1), 85–119 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. J. Differ. Geom. 34(2), 561–570 (1991)

    Article  MATH  Google Scholar 

  10. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. II. J. Differ. Geom. 35(3), 627–641 (1992)

    Article  MATH  Google Scholar 

  11. Kachi, Y., Kollár, J.: Characterizations of \({P}^n\) in arbitrary characteristic. Asian J. Math. 4(1), 115–121 (2000). Kodaira’s issue

    Article  MathSciNet  MATH  Google Scholar 

  12. Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13, 31–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. LeBrun, C., Mason, L.J.: Zoll manifolds and complex surfaces. J. Differ. Geom. 61(3), 453–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109, 427–474 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lempert, L.: Symmetries and other transformations of the complex Monge–Ampère equation. Duke Math. J. 52(4), 869–885 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lempert, L., Szőke, R.: Global solutions of the homogeneous complex Monge–Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4), 689–712 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leung, K.K.: Complex Geometric Invariants Associated to Zoll Manifolds. Thesis, University of Michigan (2014)

  18. Patrizio, G., Wong, P.M.: Stein manifolds with compact symmetric center. Math. Ann. 289(3), 355–382 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Serre, J.P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6, 1–42 (1955-1956)

  20. Stoll, W.: Variétés strictement paraboliques. C. R. Acad. Sci. Paris Sér. A B 285(12), A757–A759 (1977)

    MATH  Google Scholar 

  21. Stoll, W.: The characterization of strictly parabolic manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7(1), 87–154 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Szőke, R.: Complex structures on tangent bundles of Riemannian manifolds. Math. Ann. 291(3), 409–428 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szőke, R.: Adapted complex structures and Riemannian homogeneous spaces. Ann. Polon. Math. 70, 215–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsukamoto, C.: Infinitesimal Blaschke conjectures on projective spaces. Ann. Sci. École Norm. Sup. (4) 14(3), 339–356 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Burns Jr..

Additional information

Communicated by Ngaiming Mok.

Supported in part by NSF grant DMS-1105586.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, D.M., Leung, K.K. The complex Monge–Ampère equation, Zoll metrics and algebraization. Math. Ann. 371, 1–40 (2018). https://doi.org/10.1007/s00208-017-1547-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1547-x

Navigation