Skip to main content

Advertisement

Log in

Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This study is an attempt to simulate and analyze a lab-scale two-bed pressure swing adsorption in order to investigate the performance of three different adsorbents (Cu-BTC as a new generation adsorbent, activated carbon, and zeolite 5A) with different feed compositions, and find a novel combination of layered bed. Four different flows of steam methane reforming reactor were considered as inlet feeds for hydrogen purification. Comparison of the feeds with different compositions showed that in the presence of high amounts of impurities, an adsorption bed of Cu-BTC produces hydrogen at a higher purity than activated carbon, zeolite 5A, or an activated carbon-zeolite 5A layered bed. The simulation results from feed 4 (H2:CO2:CO:CH4 = 0.4574:0.3174:0.0622:0.1630) with high amounts of impurities, showed that the use of Cu-BTC leads to hydrogen purity of up to 97.22%, while activated carbon, zeolite 5A, and the layered bed cannot improve the purity beyond 86.46%. This work shows that Cu-BTC is capable of being used in the first layer of layered beds. This was confirmed by comparing the performance of the three combinations of Cu-BTC, activated carbon, and zeolite 5A. The first configuration of the three adsorbents, in which the Cu-BTC was used as the first layer, purified hydrogen up to + 99.99% and recovered it up to 21.25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({A_w}\) :

Wall cross section area, m2

C :

Total gas concentration, mol/kg

\({C_e}_{i}\) :

Equilibrium gas concentration \(i\) correspond to \(q_{i}^{*}\), mol/kg

\({C_i}\) :

Gas concentration of component \(i\), mol/kg

\({C_{p,g}}\) :

Gas bulk heat capacity, J/kg K

\({C_{p,s}}\) :

Adsorbent heat capacity, J/kg K

\({C_{p,w}}\) :

Wall heat capacity, J/kg K

\({D_e}\) :

Effective diffusion coefficient in macropore, m2/s

\({D_{i,j}}\) :

Binary molecular diffusivity, m2/s

\({D_{k,i}}\) :

Knudsen diffusivity of component \(i\), m2/s

\({D_L}\) :

Axial dispersion coefficient, m2/s

\({D_m}\) :

Molecular diffusivity of the gas mixture, m2/s

\({D_{m,i}}\) :

Molecular diffusivity of component \(i\), m2/s

\({D_{p,i}}\) :

Effective pore diffusivity of component \(i\), m2/s

\({d_P}\) :

Particle diameter, m

\({h_{in}}\) :

Internal heat transfer coefficient, W/m2 K

\({h_{out}}\) :

External heat transfer coefficient, W/m2 K

\({k_f}\) :

Film mass transfer coefficient, m/s

\({K_L}\) :

Axial heat dispersion coefficient, W/m2 K

\({K_{1 - 6,i}}\) :

Equilibrium constants of dual site Langmuir equilibrium isotherm of component \(i\)

\(L\) :

Column length, m

\({M_i}\) :

Molar mass of component \(i\)

\(nc\) :

Number of components

\(P\) :

Gas phase pressure, Pa

\({P_A}\) :

Pressure of bed at start of steps DPE (5 × 105), BD (3 × 105) and PPE (1 × 105), Pa

\({P_B}\) :

Pressure of bed at end of steps DPE (3 × 105), BD (1 × 105) and PPE (3 × 105), Pa

\({P_i}\) :

Partial pressure of component \(i\), Pa

\({q_i}\) :

Amount of adsorbate \(i\) in the adsorbed phase, mol/kg

\(q_{i}^{*}\) :

Adsorbed phase concentration in equilibrium with bulk phase of component \(i\), mol/kg

\({R_{Bi}}\) :

Internal bed radius, m

\({R_{Bo}}\) :

External bed radius, m

\({R_{f,i}}\) :

Film resistance of component \(i\)

\({R_{macro,i}}\) :

Macropore resistance of component \(i\)

\({R_{micro,i}}\) :

Micropore resistance of component \(i\)

\({R_p}\) :

Particle radius, m

\(Re\) :

Dimensionless Reynolds number

\({r_p}\) :

Mean pore radius, m

\(Sc\) :

Dimensionless Schmidt number

\(Sh\) :

Dimensionless Sherwood number

\(t\) :

Time, s

\(T\) :

Gas phase temperature, K

\({T_{amb}}\) :

Ambient temperature, K

\({T_w}\) :

Column wall temperature, K

\(u\) :

Superficial velocity of gas, m/s

\({V_{Col}}\) :

Volume of column, m3

\({y_i}\) :

Mole fraction of component \(i\) in gas phase

\(z\) :

Partition of the column length \(L\), m

\(Z\) :

Dimensionless length of column \(z/L\)

\(\Delta {H_i}\) :

Heat of adsorption of component \(i\), J/mol

\(\beta\) :

Exponential decay rate constant, 1/s

\({{\varvec{\upvarepsilon}}}\) :

Bed porosity

\({{{\varvec{\upvarepsilon}}}_t}\) :

Total porosity

\({\mu _g}\) :

Gas viscosity, Pa.s

\({\mu _i}\) :

Viscosity of component \(i\), Pa.s

\({\rho _B}\) :

Bed density \(\left( {: = \;(1 - \varepsilon )\rho _{p} } \right)\), kg/m3

\({\rho _g}\) :

Gas density, kg/m3

\({\rho _p}\) :

Adsorbent particle density, kg/m3

\({\rho _w}\) :

Wall density, kg/m3

\({\omega _i}\) :

Adsorption rate constant of component \(i\), 1/s

References

  • Ahn, S., You, Y.-W., Lee, D.-G., Kim, K.-H., Oh, M., Lee, C.-H.: Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chem. Eng. Sci. 68(1), 413–423 (2012)

    Article  CAS  Google Scholar 

  • Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  • Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007)

    Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  CAS  Google Scholar 

  • Collins, D.J., Zhou, H.-C.: Hydrogen storage in metal–organic frameworks. J. Mater. Chem. 17(30), 3154 (2007)

    Article  CAS  Google Scholar 

  • Cruz, P., Alves, M.A., Magalhães, F.D., Mendes, A.: Solution of hyperbolic PDEs using a stable adaptive multiresolution method. Chem. Eng. Sci. 58(9), 1777–1792 (2003)

    Article  CAS  Google Scholar 

  • Cui, Y., Yue, Y., Qian, G., Chen, B.: Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012)

    Article  CAS  PubMed  Google Scholar 

  • DeCoste, J.B., et al.: The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 1(38), 11922 (2013)

    Article  CAS  Google Scholar 

  • Delgado, J.A., Águeda, V.I., Uguina, M.A., Sotelo, J.L., Brea, P., Grande, C.A.: Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res. 53(40), 15414–15426 (2014)

    Article  CAS  Google Scholar 

  • Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968)

    Article  CAS  Google Scholar 

  • Eguchi, K.: Clean Energy Systems and Experiences, 1st edn. InTech, Rijeka, Croatia (2010)

    Book  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    CAS  Google Scholar 

  • Grant Glover, T., Peterson, G.W., Schindler, B.J., Britt, D., Yaghi, O.: MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 66(2), 163–170 (2011)

    Article  CAS  Google Scholar 

  • Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T., Xu, Q.: Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 133(31), 11822–11825 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Gul-E-Noor, F., et al.: Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 13(17), 7783 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Holladay, J.D.D., Hu, J., King, D.L.L., Wang, Y.: An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)

    Article  CAS  Google Scholar 

  • Huang, Q., Malekian, A., Eić, M.: Optimization of PSA process for producing enriched hydrogen from plasma reactor gas. Sep. Purif. Technol. 62(1), 22–31 (2008)

    Article  CAS  Google Scholar 

  • Jee, J., Kim, M., Lee, C.: Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures. Ind. Eng. Chem. Res. 40, 868–878 (2001)

    Article  CAS  Google Scholar 

  • Krungleviciute, V., et al.: Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2 (H2O)3 metal-organic framework. Langmuir 23, 3106–3109 2007

    Article  CAS  Google Scholar 

  • Lee, J.J., Kim, M.K., Lee, D.G., Ahn, H., Kim, M.J., Lee, C.H.: Heat-exchange pressure swing adsorption process for hydrogen separation. AIChE J. 54(8), 2054–2064 (2008)

    Article  CAS  Google Scholar 

  • Liu, K., Song, C., Subramani, V. (eds.): Hydrogen and Syngas Production and Purification Technologies. Wiley, Hoboken, NJ (2009)

    Google Scholar 

  • Lomig, H., Elsa, J., Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49(16), 7497–7503 (2010)

    Google Scholar 

  • Lopes, F.V.S., et al.: Adsorption of H2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44(5), 1045–1073 (2009a)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Ribeiro, A.M., Oliveira, E.L.G., Loureiro, J.M., Rodrigues, A.E.: Enhancing capacity of activated carbons for hydrogen purification. Ind. Eng. Chem. Res. 48(8), 3978–3990 (2009b)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66(3), 303–317 (2011)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Fast-cycling VPSA for hydrogen purification. Fuel 93, 510–523 (2012)

    Article  CAS  Google Scholar 

  • Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption, 20(2–3), 511–524 (2014)

    Article  CAS  Google Scholar 

  • Ma, S., Zhou, H.-C.: Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)

    Article  CAS  Google Scholar 

  • Malek, A., Farooq, S.: Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AIChE J. 43(3), 761–776 (1997)

    Article  CAS  Google Scholar 

  • Mofarahi, M.: Dynamic simulation of vacuum pressure swing adsorption process. In: The 15th IASTED International Conference Applied Simulation and Modeling, vol. 1, p 33. Rhodes, Greece (2006)

  • Mofarahi, M., Sadrameli, M., Towfighi, J.: Four-bed vacuum pressure swing adsorption process for propylene/propane separation. Ind. Eng. Chem. Res. 44(5), 1557–1564 (2005)

    Article  CAS  Google Scholar 

  • Papadias, D.D., Ahmed, S., Kumar, R., Joseck, F.: Hydrogen quality for fuel cell vehicles: a modeling study of the sensitivity of impurity content in hydrogen to the process variables in the SMR–PSA pathway. Int. J. Hydrog. Energy 34(15), 6021–6035 (2009)

    Article  CAS  Google Scholar 

  • Park, J., Kim, J., Cho, S.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46(4), 790–802 (2000)

    Article  CAS  Google Scholar 

  • Peng, M.M., Kim, D.K., Aziz, A., Back, K.R., Jeon, U.J., Jang, H.T.: CO2 Adsorption of Metal Organic Framework Material Cu-BTC via Different Preparation Routes, pp. 244–251. Springer, Berlin (2012)

    Google Scholar 

  • Peterson, G.W., Wagner, G.W., Balboa, A., Mahle, J., Sewell, T., Karwacki, C.J.: Ammonia vapor removal by Cu (BTC) and its characterization by MAS NMR. J. Phys. Chem. C 113(31), 13906–13917 (2009)

    Article  CAS  Google Scholar 

  • Plaza, M.G., et al.: Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Sep. Purif. Technol. 90, 109–119 (2012)

    Article  CAS  Google Scholar 

  • Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63, 5258–5273 (2008)

    Article  CAS  Google Scholar 

  • Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)

    Article  CAS  Google Scholar 

  • Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Shu, C.: Differential Quadrature and Its Application in Engineering, 1st edn. Springer, London (2000)

    Book  Google Scholar 

  • Silva, J.A.C., da Silva, F.A., Rodrigues, A.E.: Methodology of Gas Adsorption Process Design. Separation of Propane/Propylene and n/iso-Paraffins Mixtures, pp. 371–394. Elsevier, New York (1999)

    Google Scholar 

  • Silva, B., et al.: H2 purification by pressure swing adsorption using CuBTC. Sep. Purif. Technol. 118, 744–756 (2013)

    Article  CAS  Google Scholar 

  • Skoulidas, A.I.: Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. J. Am. Chem. Soc. 126(5), 1356–1357 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112(2), 782–835 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Tsai, W.T., Lai, C.W., Hsien, K.J.: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J. Colloid Interface Sci. 263(1), 29–34 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V., Bülow, M., Wang, Q.M.: Nanopore structure and sorption properties of Cu–metal–organic framework. Nano Lett. 3(6), 713–718 (2003)

    Article  CAS  Google Scholar 

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 33(10), 1375–1384 (1978)

    Article  CAS  Google Scholar 

  • Yang, Q., Xue, C., Zhong, C., Chen, J.-F.: Molecular simulation of separation of CO2 from flue gases in CU-BTC metal-organic framework. AIChE J. 53(11), 2832–2840 (2007)

    Article  CAS  Google Scholar 

  • Yang, S.-I., Choi, D.-Y., Jang, S.-C., Kim, S.-H., Choi, D.-K.: Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 14(4–5), 583–590 (2008)

    Article  CAS  Google Scholar 

  • You, Y.-W., Lee, D.-G., Yoon, K.-Y., Moon, D.-K., Kim, S.M., Lee, C.-H.: H2 PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrog. Energy 37, 18175–18186 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Persian Gulf University for financial support, for providing various facilities, and for necessary approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mofarahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, S., Mofarahi, M. & Rodrigues, A.E. Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption. Adsorption 24, 481–498 (2018). https://doi.org/10.1007/s10450-018-9955-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9955-0

Keywords

Navigation