Skip to main content

Advertisement

Log in

CO2 adsorption on Cu-BTC to improve the quality of syngas produced from supercritical water gasification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

One outstanding advantage of supercritical water gasification (SCWG) coupled with CO2 capture and storage (CCS) technology is to realize the conversion of bio-waste into hydrogen-rich syngas. In this study, metal organic frameworks of copper benzene-1,3,5-tricarboxylate (Cu-BTC) were synthesized via solvothermal method with different synthesis time and used as adsorbent for capturing CO2 from SCWG model syngas. The effect of synthesis time, adsorption temperature, and adsorption pressure on CO2 adsorption capacity of Cu-BTC was evaluated using analysis of variance (ANOVA). The Pareto chart showed that adsorption pressure had significant effect on CO2 adsorption capacity, and the surface plot indicated that CO2 adsorption capacity increased with higher adsorption pressure and lower adsorption temperature. Cu-BTC with 48-h synthesis time had the largest specific surface area (1737 cm2/g) and pore volume (0.73 cm3/g), and it exhibited the highest CO2 capacity of 19.83 mmol/g and 13.56 mmol/g at 0 °C and 25 °C, respectively. The adsorption results showed that CO2 concentration in multi-component gas decreased from 48.75 to 12.9%, and H2 concentration increased from 38.75 to 75.45%. Therefore, Cu-BTC has the potential for removal of CO2 from SCWG syngas, and more work is necessary to further improve the adsorption capacity and selectivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang W, Zhang L, Li A (2015) Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: process performance and synergistic effects. Chem Eng J 259:795–805. https://doi.org/10.1016/j.cej.2014.08.039

    Article  Google Scholar 

  2. Ma W, Wenga T, Frandsen FJ, et al (2020) The fate of chlorine during MSW incineration: vaporization, transformation, deposition, corrosion and remedies. Prog Energy Combust Ence 76:100789.1–100789.39. https://doi.org/10.1016/j.pecs.2019.100789

  3. Soria J, Gauthier D, Flamant G et al (2015) Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD. Waste Manag 43:176–187. https://doi.org/10.1016/j.wasman.2015.05.021

    Article  Google Scholar 

  4. Luo J, Huang W, Guo W et al (2020) Novel strategy to stimulate the food wastes anaerobic fermentation performance by eggshell wastes conditioning and the underlying mechanisms. Chem Eng J 398:125560. https://doi.org/10.1016/j.cej.2020.125560

    Article  Google Scholar 

  5. Su H, Liao W, Wang J et al (2020) Assessment of supercritical water gasification of food waste under the background of waste sorting: Influences of plastic waste contents. Int J Hydrogen Energy 45:21138–21147. https://doi.org/10.1016/j.ijhydene.2020.05.256

    Article  Google Scholar 

  6. Chen J, Wang Q, Xu Z et al (2021) Process in supercritical water gasification of coal: A review of fundamentals, mechanisms, catalysts and element transformation. Energy Convers Manag 237:114122. https://doi.org/10.1016/j.enconman.2021.114122

    Article  Google Scholar 

  7. Yan M, Su H, Zhou Z et al (2020) Gasification of effluent from food waste treatment process in sub- and supercritical water: H2-rich syngas production and pollutants management. Sci Total Environ 730:138517. https://doi.org/10.1016/j.scitotenv.2020.138517

    Article  Google Scholar 

  8. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip Rev Energy Environ. https://doi.org/10.1002/wene.97

    Article  Google Scholar 

  9. Samaneh B, Abdolreza, et al (2020) Advances in high carbon dioxide separation performance of poly(ethylene oxide)-based membranes. J Energy Chem 46:42–64. https://doi.org/10.1016/j.jechem.2019.10.019

    Article  Google Scholar 

  10. Park Y, Moon D-K, Park D et al (2019) Adsorption equilibria and kinetics of CO2, CO, and N2 on carbon molecular sieve. Sep Purif Technol 212:952–964. https://doi.org/10.1016/j.seppur.2018.11.069

    Article  Google Scholar 

  11. Kumar R, Zhang C, Itta AK, Koros WJ (2019) Highly permeable carbon molecular sieve membranes for efficient CO2/N2 separation at ambient and subambient temperatures. J Memb Sci 583:9–15. https://doi.org/10.1016/j.memsci.2019.04.033

    Article  Google Scholar 

  12. Naama S, Hadjersi T, Keffous A, Nezzal G (2015) CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater Sci Semicond Process 38:367–372. https://doi.org/10.1016/j.mssp.2015.01.027

    Article  Google Scholar 

  13. Wang Y, Guo T, Hu X et al (2020) Mechanism and kinetics of CO2 adsorption for TEPA- impregnated hierarchical mesoporous carbon in the presence of water vapor. Powder Technol 368:227–236. https://doi.org/10.1016/j.powtec.2020.04.062

    Article  Google Scholar 

  14. Kloutse FA, Hourri A, Natarajan S et al (2019) Systematic study of the excess and the absolute adsorption of N2/H2 and CO2/H2 mixtures on Cu-BTC. Adsorpt Int Adsorpt Soc 25:941–950. https://doi.org/10.1007/s10450-019-00124-3

    Article  Google Scholar 

  15. Karra JR, Walton KS (2010) Molecular Simulations and experimental studies of CO2, CO, and N2 adsorption in metal−organic frameworks. J Phys Chem C 114:45–56. https://doi.org/10.1021/jp105519h

    Article  Google Scholar 

  16. Nobar, Najafi S (2018) Cu-BTC Synthesis, characterization and preparation for adsorption studies. Mater Chem Phys S0254058418302931. https://doi.org/10.1016/j.matchemphys.2018.04.031

  17. Xiuqin D et al (2018) Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: a DFT study. J Colloid Interface Sci 535:122–132. https://doi.org/10.1016/j.jcou.2017.11.014

    Article  Google Scholar 

  18. Chang M, Meng XX, Wang Y, Zhang W (2019) Enhanced thermal and electrical conductivity of Cu-BTC metal organic framework with high CO2/H2 selectivity by composing with carbon fiber paper. Int J Hydrogen Energy 44:29583–29589. https://doi.org/10.1016/j.ijhydene.2019.05.012

    Article  Google Scholar 

  19. Wang H, Qu ZG, Zhou L (2018) Coupled GCMC and LBM simulation method for visualizations of CO2/CH4 gas separation through Cu-BTC membranes. J Memb Sci 550:448–461. https://doi.org/10.1016/j.memsci.2017.12.066

    Article  Google Scholar 

  20. Shang S, Tao Z, Yang C et al (2020) Facile synthesis of CuBTC and its graphene oxide composites as efficient adsorbents for CO2 capture. Chem Eng J 393:124666. https://doi.org/10.1016/j.cej.2020.124666

    Article  Google Scholar 

  21. Xue C, Zhang Q, Wang E, et al (2020) Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems. J Co2 Util 36:1–8. https://doi.org/10.1016/j.jcou.2019.10.018

  22. Karra JR, Walton KS (2008) Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC. Langmuir 24:8620–8626. https://doi.org/10.1021/la800803w

    Article  Google Scholar 

  23. Seo YK, Hundal G, Jang IT et al (2009) Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater 119:331–337. https://doi.org/10.1016/j.micromeso.2008.10.035

    Article  Google Scholar 

  24. Irani V, Tavasoli A, Maleki A, Vahidi M (2018) Polyethyleneimine-functionalized HKUST-1/MDEA nanofluid to enhance the absorption of CO2 in gas sweetening process. Int J Hydrogen Energy 43:5610–5619. https://doi.org/10.1016/j.ijhydene.2018.01.120

    Article  Google Scholar 

  25. Chen C, Wang H, Chen Y, et al (2020) Layer-by-layer self-assembly of hierarchical flower-like HKUST-1-based composite over amino-tethered SBA-15 with synergistic enhancement for CO2 capture. Chem Eng J 127396. https://doi.org/10.1016/j.cej.2020.127396

  26. Basu S, Cano-Odena A, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40. https://doi.org/10.1016/j.seppur.2011.06.037

    Article  Google Scholar 

  27. Li J, Yang J, Li L, Li J (2014) Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2. J Energy Chem 460. https://doi.org/10.1016/S2095-4956(14)60171-6

  28. NadeenAl-Janabi, PatrickHill, LauraTorrente-Murciano, ArthurGarforth, PatriciaGorgojo, FlorSiperstein, XiaoleiFan (2015) Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem Eng J 281:669–677. https://doi.org/10.1016/j.cej.2015.07.020

  29. Silva B, Solomon I, Ribeiro AM et al (2013) H2 purification by pressure swing adsorption using CuBTC. Sep Purif Technol 118:744–756

    Article  Google Scholar 

  30. 1016/j.seppur.2013.08.024

  31. Song F, Cao Y, Jiang R et al (2019) Influence of water vapor and acid gases on CO2 adsorption using N. N-dimethylethylenediamine decorated Cu-BTC SN Appl Sci 1:1186. https://doi.org/10.1007/s42452-019-1216-7

    Article  Google Scholar 

  32. Zhao Y, Seredych M, Jagiello J et al (2014) Insight into the mechanism of CO2 adsorption on Cu–BTC and its composites with graphite oxide or aminated graphite oxide. Chem Eng J 239:399–407. https://doi.org/10.1016/j.cej.2013.11.037

    Article  Google Scholar 

  33. Ghanbari T, Abnisa F, Wan Daud WMA (2020) (MOF) for CO2 adsorptionA review on production of metal organic frameworks. Sci Total Environ 707:135090. https://doi.org/10.1016/j.scitotenv.2019.135090

    Article  Google Scholar 

  34. Zhang Y, Wibowo H, Zhong L, et al (2021) Cu-BTC-based composite adsorbents for selective adsorption of CO2 from syngas. Sep Purif Technol 119644. https://doi.org/10.1016/j.seppur.2021.119644

  35. Hu J, Liu Y, Liu J et al (2018) Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel 226:591–597. https://doi.org/10.1016/j.fuel.2018.04.067

    Article  Google Scholar 

  36. Hatami A, Salahshoori I, Rashidi N, Nasirian D (2020) The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method. Chinese J Chem Eng 28:2267–2284. https://doi.org/10.1016/j.cjche.2019.12.011

    Article  Google Scholar 

  37. Agueda VI, Delgado JA, Uguina MA et al (2015) Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates. Chem Eng Sci 124:159–169. https://doi.org/10.1016/j.ces.2014.08.039

    Article  Google Scholar 

  38. Chui SS-Y, Lo SM-F, Charmant JPH, et al (1999) A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science (80- ) 283:1148–1150. https://doi.org/10.1126/science.283.5405.1148

  39. Chen Y, Mu X, Lester E, Wu T (2018) High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog Nat Sci Mater Int 28:584–589. https://doi.org/10.1016/j.pnsc.2018.08.002

    Article  Google Scholar 

  40. Liu Y, Ghimire P, Jaroniec M (2019) Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. J Colloid Interface Sci 535:122–132. https://doi.org/10.1016/j.jcis.2018.09.086

    Article  Google Scholar 

  41. Campello SL, Gentil G, Júnior SA, De Azevedo WM (2015) Laser ablation: A new technique for the preparation of metal-organic frameworks Cu3(BTC)2(H2O)3. Mater Lett 148:200–203. https://doi.org/10.1016/j.matlet.2015.01.159

    Article  Google Scholar 

  42. Bian Z, Zhu X, Jin T et al (2014) Ionic liquid-assisted growth of Cu3(BTC)2 nanocrystals on graphene oxide sheets: towards both high capacity and high rate for CO2 adsorption. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2014.08.012

    Article  Google Scholar 

  43. Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88. https://doi.org/10.1016/j.micromeso.2003.12.027

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation, China (51976196), and International Cooperation Project of Zhejiang Province (2019C04026).

Funding

National Natural Science Foundation of China,51976196,Mi Yan,International Cooperation Project of Zhejiang Province,2019C04026,Mi Yan

Author information

Authors and Affiliations

Authors

Contributions

Mi Yan: Investigation, methodology, data curation, writing an original draft. Yan Zhang: Investigation, methodology, data curation. Nurak Grisdanurak: Resources, investigation. Haryo Wibowo: Investigation, data curation. Caimeng Yu: Resources, Methodology. Ekkachai Kanchanatip: Writing, review and editing; supervision.

Corresponding author

Correspondence to Ekkachai Kanchanatip.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Extending the synthesis time enhanced the performance of Cu-BTC.

• Increasing adsorption pressure and decreasing adsorption temperature effectively improved CO2 adsorption.

• Adsorption selectivity of CO2 over H2, CO, and CH4 in multi-component gas decreased slightly with increasing adsorption pressure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Zhang, Y., Grisdanurak, N. et al. CO2 adsorption on Cu-BTC to improve the quality of syngas produced from supercritical water gasification. Biomass Conv. Bioref. 13, 14049–14058 (2023). https://doi.org/10.1007/s13399-021-02194-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02194-2

Keywords

Navigation