Skip to main content
Log in

Dynamics of two-cell systems with discrete delays

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the system of delay differential equations (DDE) representing the models containing two cells with time-delayed connections. We investigate global, local stability and the bifurcations of the trivial solution under some generic conditions on the Taylor coefficients of the DDE. Regarding eigenvalues of the connection matrix as bifurcation parameters, we obtain codimension one bifurcations (including pitchfork, transcritical and Hopf bifurcation) and Takens-Bogdanov bifurcation as a codimension two bifurcation. For application purposes, this is important since one can now identify the possible asymptotic dynamics of the DDE near the bifurcation points by computing quantities which depend explicitly on the Taylor coefficients of the original DDE. Finally, we show that the analytical results agree with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Golubitsky, M., Krupa, M.: Coupled arrays of Josephson junctions and bifurcation of maps with SN-symmetry. Nonlinearity 4, 861–902 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balachandran, B., Kalmar-Nagy, T., et al.: Delay Differential Equations, Recent Advances and New Directions. Springer, New York (2009)

    MATH  Google Scholar 

  3. Baptistini, M., T’boas, P: On the existence and global bifurcation of periodic solutions to planar differential delay equations. J. Differ. Equ. 127, 391–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, J., Wang, L.: Periodic oscillatory solution of bidirectional associative memory networks with delays. Phys. Rev. E 61, 1825–1828 (2000)

    Article  MathSciNet  Google Scholar 

  5. Cao, J., Zhou, D.: Stability analysis of delayed cellular neural networks. Neural Netw. 11, 1601–1605 (1998)

    Article  Google Scholar 

  6. Chen, Y., Wu, J.: Minimal instability and unstable set of a phase-locked periodic orbit in a delayed neural network. Physica D 134, 185–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Wu, J.: Existence and attraction of a phase-locked oscillation in a delayed network of two neurons. Differential Integral Equations 14, 1181–1236 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Wu, J: The asymptotic shapes of periodic solutions of a singular delay differential systems. J. Differ. Equ. 169, 614–632 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Wu, J.: Slowly oscillating periodic solutions for a delayed frustrated network of two neurons. J. Math. Anal. Appl. 259, 188–208 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, M., Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 13(5), 815–825 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Collins, J.J., Stewart, I.: Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3, 349–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Collins, J.J., Stewart, I.: Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern. 68, 287–298 (1993)

    Article  MATH  Google Scholar 

  13. Collins, J.J., Stewart, I.: A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern. 71, 95–103 (1994)

    Article  MATH  Google Scholar 

  14. Dadi, Z., Afsharnezhad, Z., Pariz, N.: Stability and bifurcation analysis in the delay-coupled nonlinear oscillators. Nonlinear Dyn. 70, 155–169 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dadi, Z., Afsharnezhad, Z.: Bifurcation conditions for stabilizing the unstable orbits of nonlinear planar systems. Journal of Advanced Research in Dynamical and Control Systems 4(3), 23–40 (2012)

    MathSciNet  Google Scholar 

  16. Monfared, Z., Dadi, Z.: Analysing panel flutter in supersonic flow by Hopf bifurcation. Iranian Journal of Numerical Analysis and Optimization 4(2), 1–14 (2014)

    MATH  Google Scholar 

  17. Faria, T: On a planar system modelling a neuron network with memory. J. Differ. Equ. 168, 129–149 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Godoy, M., Dos Reis, J.G.: Stability and existence of periodic solutions of a functional differential equation. J. Math. Anal. Appl. 198, 381–398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golubitsky, M., Pivato, M., Stewart, I.: Interior symmetry and local bifurcation in coupled cell networks. Dyn. Syst. 19, 389–407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Am. Math. Soc. 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golubitsky, M., Stewart, I., Buono, P.L., Collins, J.J.: A modular network for legged locomotion. Physica D 115, 56–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golubitsky, M., Stewart, I., Török, A.: Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4(1), 78–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gopalsamy, K., He, X.: Stability in asymmetric Hopfield nets with transmission delays. Physica D 76, 344–358 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  26. Guo, S., Huang, L.: Linear stability and Hopf bifurcation in a two-neuron network with three delays. Int. J. Bifurcation Chaos 8, 2799–2810 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, S., Huang, L.: Periodic oscillation for a class of neural networks with variable coefficients. Nonlinear Anal. Real World Appl. 6, 545–561 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hadley, P., Beasley, M.R., Wiesenfeld, K.: Phase locking of Josephson junction series arrays. Phys. Rev. B 38, 8712–8719 (1988)

    Article  Google Scholar 

  29. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  30. Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977)

    Book  MATH  Google Scholar 

  31. Hopfield, J.: Neurons with graded response have collective computational properties like two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81, 3088–3092 (1984)

    Article  Google Scholar 

  32. Huanga, C., He, Y., Huang, L., Zhaohui, Y.: Hopf bifurcation analysis of two neurons with three delays. Nonlinear Anal. Real World Appl. 8, 903–921 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, C., Huang, L., Feng, J., Nai, M., He, Y.: Hopf bifurcation analysis for a two-neuron network with four delays. Chaos, Solitons Fractals 34, 795–812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kopell, N., Ermentrout, G.B.: Coupled oscillators and the design of central pattern generators. Math. Biosci. 89, 14–23 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Kopell, N., Ermentrout, G.B.: Phase transitions and other phenomena in chains of oscillators. SIAM J. Appl. Math. 50, 1014–1052 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marcus, C., Westervelt, R.M.: Stability of analog neural network with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  37. Olien, L., Blair, J.: Bifurcations, stability and monotonicity properties of a delayed neural network model. Physica D 102, 349–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruan, S., Wei, J.: Periodic solutions of planar systems with two delays. Proc. R. Soc. Edinb. 129A, 1017–1032 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruelas, R.E., Rand, R.H.: Dynamics of a model of two delay-coupled relaxation oscillators. Commun. Nonlinear Sci. Numer. Simul. 15, 1980–1988 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Song, Y., Wei, J., Han, M.: Local and global Hopf bifurcation in a delayed hematopoliesis model. Int. J. Bifurcation Chaos 14, 3909–3919 (2004)

    Article  MATH  Google Scholar 

  41. Stewart, I., Golubitsky, M., Pivato, M.: Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dynam Sys 2(4), 606–646 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, C., Han, M., Lin, Y., Chen, Y.: Global qualitative analysis for a predator-prey system with delay. Chaos, Solitons Fractals 32, 1582–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. T’boas, P.: Periodic solution of a planar delay equation. Proc. R. Soc. Edinb. 116A, 85–101 (1990)

    Article  MathSciNet  Google Scholar 

  44. van den Driessche, P., Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Math. 58, 1878–1890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255–272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, X.P., Eshete, M.: Bifurcation analysis for a model of gene expression with delays. Commun. Nonlinear Sci. Numer. Simul. 16, 1073–1088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiao, M., Cao, J.: Stability and Hopf bifurcation in a delayed competitive web sites model. Phys. Lett. A 353, 138–150 (2006)

    Article  MATH  Google Scholar 

  48. Yan, X., Li, W.: Bifurcation and global periodic solutions in a delayed facultative mutualism system. Physica D 227, 51–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, B., Zhang, Y., Zhang, C.: Global existence of periodic solutions on a simplified BAM neural network model with delays. Chaos, Solitons Fractals 37, 1397–1408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Dadi.

Additional information

Communicated by: Karsten Urban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadi, Z. Dynamics of two-cell systems with discrete delays. Adv Comput Math 43, 653–676 (2017). https://doi.org/10.1007/s10444-016-9501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9501-0

Keywords

Mathematics Subject Classification (2010)

Navigation