Skip to main content
Log in

ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a descent direction method for finding extrema of locally Lipschitz functions defined on Riemannian manifolds. To this end we define a set-valued mapping \(x\rightarrow \partial _{\varepsilon } f(x)\) named ε-subdifferential which is an approximation for the Clarke subdifferential and which generalizes the Goldstein- ε-subdifferential to the Riemannian setting. Using this notion we construct a steepest descent method where the descent directions are computed by a computable approximation of the ε-subdifferential. We establish the global convergence of our algorithm to a stationary point. Numerical experiments illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.A., Baker, C.G.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithm on Matrix Manifolds. Princeton University Press (2008)

  3. Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51, 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azagra, D., Ferrera, J., López-Mesas, F.: Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azagra, D., Ferrera, J.: Applications of proximal calculus to fixed point theory on Riemannian manifolds. Nonlinear. Anal. 67, 154–174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bagirov, A.M.: Continuous subdifferential approximations and their applications. J. Math. Sci. 115, 2567–2609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bento, G.C., Ferreira, O.P., Oliveira, P.R.: Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154, 88–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bento, G.C., Melo, J.G.: A subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152, 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borckmans, P.B., Easter Selvan, S., Boumal, N., Absil, P.A.: A Riemannian subgradient algorithm for economic dispatch with valve-point effect. J. Comput. Appl. Math. 255, 848–866 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27, 567–584 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clarke, F.H.: Necessary Conditions for Nonsmooth Problems in Optimal Control and the Calculus of Variations, Thesis, University of Washington, Seattle (1973)

  14. da Cruz Neto, J.X., Lima, L.L., Oliveira, P.R.: Geodesic algorithm in Riemannian manifolds. Balkan J. Geom. Appl. 2, 89–100 (1998)

    MATH  Google Scholar 

  15. da Cruz Neto, J.X., Ferreira, O.P., Lucambio Perez, L.R.: A proximal regularization of the steepest descent method in Riemannian manifold. Balkan J. Geom. Appl. 2, 1–8 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Dirr, G., Helmke, U., Lageman, C.: Nonsmooth Riemannian optimization with applications to sphere packing and grasping In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006: Proceedings from the 3rd IFAC Workshop, Nagoya, Japan, 2006, Lecture Notes in Control and Information Sciences, vol. 366. Springer, Berlin (2007)

  17. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97, 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements, SAM Report 2013–16, ETH Zürich. Submitted (2013)

  19. Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hosseini, S., Pouryayevali, M.R.: Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds. Nonlinear Anal. 74, 3884–3895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hosseini, S., Pouryayevali, M.R.: Euler characterization of epi-Lipschitz subsets of Riemannian manifolds. J. Convex. Anal. 20(1), 67–91 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Hosseini, S., Pouryayevali, M.R.: On the metric projection onto prox-regular subsets of Riemannian manifolds. Proc. Amer. Math. Soc. 141, 233–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiwiel, K.C.: Methods of descent for nondifferentiable optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin (1985)

  24. Klingenberg, W.: Riemannian Geometry. Walter de Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter, Berlin (1995)

  25. Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54, 447–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999)

  27. Lee, P.Y.: Geometric Optimization for Computer Vision. PhD thesis, Australian National University (2005)

  28. Lemarechal, C.: Nondifferentiable optimization. In: Nemhauser, G.L., et al. (eds.) Handbook in Operations Research and Management Science, vol. 1, pp 529–572. North Holland, Amsterdam (1989)

  29. Li, C., Mordukhovich, B.S., Wang, J., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahony, R.E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebra. Appl. 248, 67–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mahdavi-Amiri, N., Yousefpour, R.: An effective nonsmooth optimization algorithm for locally Lipschitz functions. J. Optim. Theory Appl. 155, 180–195 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moakher, M., Zerai, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vision 40, 171–187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Papa Quiroz, E.A., Quispe, E.M., Oliveira, P.R.: Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds. J. Math. Anal. Appl. 341, 467–477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Riddell, R.C.: Minimax problems on Grassmann manifolds. Sums of eigenvalues. Adv. Math. 54, 107–199 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rockafellar, R.T.: Convex Functions and Dual Extremum Problems, Thesis, Harvard (1963)

  37. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sander, O.: Geodesic finite elements for Cosserat rods. Internat. J. Numer. Methods Engrg. 82, 1645–1670 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Institute Communications 3, 113–146 (1994)

    MathSciNet  MATH  Google Scholar 

  40. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  41. Usevich, K, Markovsky, I.: Optimization on a Grassmann manifold with application to system identification. Submitted, ( http://homepages.vub.ac.be/imarkovs/t-abstracts.html)

  42. Vandereycken, B., Vandewalle, S.: A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations. SIAM. J. Matrix Anal. Appl. 31(5), 2553–2579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yau, S.T.: Non-existence of continuous convex functions on certain Riemannian manifolds. Math. Ann. 207, 269–270 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, L.S., Sun, X.L.: An algorithm for minimizing a class of locally Lipschitz functions. J. Optim. Theory Appl. 90, 203–212 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, L.H.: Riemannian Newton method for the multivariate eigenvalue problem. SIAM J. Matrix Anal. Appl. 31, 2972–2996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosseini.

Additional information

Communicated by: A. Zhou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grohs, P., Hosseini, S. ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds. Adv Comput Math 42, 333–360 (2016). https://doi.org/10.1007/s10444-015-9426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9426-z

Keywords

Mathematics Subject Classifications (2010)

Navigation