Skip to main content
Log in

Numerical observers with vanishing viscosity for the 1d wave equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a numerical scheme associated with the iterative method developed in Ramdani et al. (ESAIM Control Optim. Calc. Var. 13(3):503–527, 2007) to recover initial conditions of conservative systems. In this method, the initial conditions are reconstructed by using observers. Here we use a finite-difference discretization in space of these observers and our aim is to prove estimates of the errors with respect to the mesh size and to the number of steps in the iterative method. This is done in the particular example of the 1d wave equation. In order to avoid restrictions of the number of steps with respect to the mesh size, we add a numerical viscosity in the numerical observers. A generalization for other equations is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auroux, D., Blum, J.: Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340(12), 873–878 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Banks, H.T., Ito, K., Wang, C.: Exponentially stable approximations of weakly damped wave equations. In: Estimation and Control of Distributed Parameter Systems (Vorau, 1990) of International Series of Numerical Mathematics, vol. 100, pp. 1–33. Birkhäuser, Basel (1991)

    Chapter  Google Scholar 

  3. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bensoussan, A.: Filtrage Optimal des Systèmes Linéaires. Dunod (1971)

  5. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise, [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris. Théorie et applications, [Theory and applications] (1983)

  6. Chapelle, D., Cîndea, N., Moireau, P.: Improving convergence in numerical analysis using observers—the wave-like equation case. Math. Models Methods Appl. Sci. 22(12), 1250040, 35 (2012)

    Article  Google Scholar 

  7. Chapelle, D., Cîndea, N., De Buhan, M., Moireau, P.: Exponential convergence of an observer based on partial field measurements for the wave equation. Math. Probl. Eng. , 12 (2012). Art. ID 581053

  8. Cîndea, N., Micu, S., Tucsnak, M.: An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 49(3), 1283–1305 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory, of Texts in Applied Mathematics, vol. 21. Springer, New York (1995)

    Book  Google Scholar 

  10. Deguenon, J., Sallet, G., Xu, C.-Z.: Infinite dimensional observers for vibrating systems. In: Proceedings of IEEE Conference on Decision and Control, pp. 3979–3983 (2006)

  11. Glowinski, R., Li, C.H., Lions, J.-L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7(1), 1–76 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Haine, G.: Recovering the initial data of an evolution equation. Application to thermoacoustic tomography. Submitted (2012)

  13. Haine, G.: Recovering the observable part of the initial data of an infinite-dimensional linear system. Submitted (2012)

  14. Haine, G., Ramdani, K.: Observateurs itératifs en horizon fini. Application à la reconstruction de données initiales pour des edp d’évolution. J. Eur. Syst. Autom. (JESA) 45(7–10), 715–724 (2011)

    Google Scholar 

  15. Haine, G., Ramdani, K.: Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120(2), 307–343 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Infante, J.-A., Zuazua, E.: Boundary observability for the space-discretizations of the 1-d wave equation. C. R. Acad. Sci. Paris Sér. I Math. 326(6), 713–718 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Infante, J.A., Zuazua, E.: Boundary observability for the space semi-discretizations of the 1-D wave equation. M2AN Math. Model. Numer. Anal. 33(2), 407–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ito, K., Ramdani, K., Tucsnak, M.: A time reversal based algorithm for solving initial data inverse problems. Discrete Contin. Dyn. Syst. Ser. S 4(3), 641–652 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kailath, T., Sayed, A.H., Babak, H.: Linear Estimation. Prentice Hall (2000)

  20. Komornik, V.: Exact controllability and stabilization. The multiplier method. In: RAM: Research in Applied Mathematics. Masson, Paris (1994)

  21. Li, X.-D., Xu, C.-Z., Peng, Y.-J., Tucsnak, M.: On the numerical investigation of a Luenberger type observer for infinite-dimensional vibrating systems. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, pp. 7624–7629. Seoul, Corée, République De (2008)

  22. Lions, J.-L.: Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] vol. 9. Masson, Paris (1988). Perturbations. [Perturbations]

  23. Micu, S.: Uniform boundary controllability of a semidiscrete 1-D wave equation with vanishing viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Moireau, P., Chapelle, D., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197(6–8), 659–677 (2008)

    Article  MATH  Google Scholar 

  25. Münch, A.: A uniformly controllable and implicit scheme for the 1-D wave equation. M2AN Math. Model. Numer. Anal. 39(2), 377–418 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Negreanu, M., Zuazua, E.: Uniform boundary controllability of a discrete 1-D wave equation. Optimization and control of distributed systems. Syst. Control Lett. 48(3–4), 261–279 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Negreanu, M., Zuazua, E.: Discrete Ingham inequalities and applications. SIAM J. Numer. Anal. 44(1), 412–448 (2006). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nicaise, S., Valein, J.: Quasi exponential decay of a finite difference space discretization of the 1-d wave equation by pointwise interior stabilization. Adv. Comput. Math. 32(3), 303–334 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Phung, K.D., Zhang, X.: Time reversal focusing of the initial state for Kirchhoff plate. SIAM J. Appl. Math. 68(6), 1535–1556 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ramdani, K., Takahashi, T., Tucsnak, M.: Internal stabilization of the plate equation in a square: the continuous and the semi-discretized problems. J. Math. Pures Appl. (9) 85(1), 17–37 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ramdani, K., Takahashi, T., Tucsnak, M.: Semi-discrétisation en espace du problème de la stabilisation interne de l’équation des poutres. In: Paris-Sud Working Group on Modelling and Scientific Computing 2006–2007, of ESAIM Proceedings, vol. 18, pp. 48–56. EDP Sci., Les Ulis (2007)

  32. Ramdani, K., Takahashi, T., Tucsnak, M.: Uniformly exponentially stable approximations for a class of second order evolution equations—application to LQR problems. ESAIM Control Optim. Calc. Var. 13(3), 503–527 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ramdani, K., Tucsnak, M., Weiss, G.: Recovering the initial state of an infinite-dimensional system using observers. Automatica 46, 1616–1625 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tébou, L.RT., Zuazua, E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95(3), 563–598 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tebou, L.T., Zuazua, E.: Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26(1–3), 337–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tucsnak, M., Weiss, G.: Observation and control for operator semigroups. In: Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009)

    Google Scholar 

  37. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Additional information

Communicated by: Robert Schaback

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, G.C., Takahashi, T. Numerical observers with vanishing viscosity for the 1d wave equation. Adv Comput Math 40, 711–745 (2014). https://doi.org/10.1007/s10444-013-9320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9320-5

Keywords

JEL Classification

Navigation