Skip to main content
Log in

Localized nonlinear functional equations and two sampling problems in signal processing

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let 1 ≤ p ≤ ∞. In this paper, we consider solving a nonlinear functional equation

f (x) = y,

where x, y belong to ℓpand f has continuous bounded gradient in an inverse-closed subalgebra of ℬ (ℓ2), the Banach algebra of all bounded linear operators on the Hilbert space 2. We introduce strict monotonicity property for functions f on Banach spaces pso that the above nonlinear functional equation is solvable and the solution x depends continuously on the given data y in p. We show that the Van-Cittert iteration converges in pwith exponential rate and hence it could be used to locate the true solution of the above nonlinear functional equation. We apply the above theory to handle two problems in signal processing: nonlinear sampling termed with instantaneous companding and subsequently average sampling; and local identification of innovation positions and qualification of amplitudes of signals with finite rate of innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Baskakov, A., Krishtal, I.: Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255, 1667–1691 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant space. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11, 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness and localization of frames I. Theory; II. Gabor system. J. Fourier Anal. Appl. 12, 105–143 and 309–344 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balan, R.: The noncommutative Wiener lemma, linear independence, and special properties of the algebra of time-frequency shift operators. Trans. Amer. Math. Soc. 360, 3921–3941 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baskakov, A.G.: Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen, 24 1990, 64–65; translation in. Funct. Anal. Appl. 24, 222–224 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bi, N., Nashed, M.Z., Sun, Q.: Reconstructing signals with finite rate of innovation from noisy samples. Acta Appl. Math. 107, 339–372 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of C -algebras. J. Operator Theory 26, 255–282 (1991)

    MATH  MathSciNet  Google Scholar 

  9. Browder, F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73, 875–882 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  10. Christensen, O., Strohmer, T.: The finite section method and problems in frame theory. J. Approx. Theory 133, 221–237 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R.: Understanding the characteristics of mass spectrometry data through the use of simulation. Cancer Informat. 1, 41–52 (2005)

    Google Scholar 

  12. Cramer, R.J.-M., Scholtz, R.A., Win, M.Z.: Evaluation of an ultra wide-band propagation channel. IEEE Trans. Antennas and Propag. 50, 561–569 (2002)

    Article  Google Scholar 

  13. Dahlke, S., Fornasier, M., Gröchenig, K.: Optimal adaptive computations in the Jaffard algebra and localized frames. J. Approx. Th. 162, 153–185 (2010)

    Article  MATH  Google Scholar 

  14. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer-Verlag, Berlin (1993)

    Book  MATH  Google Scholar 

  15. Donoho, D.: Compressive sampling. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  16. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Proc. 55, 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  17. Dvorkind, T.G., Eldar, Y.C., Matusiak, E.: Nonlinear and nonideal sampling: theory and methods. IEEE Trans. Signal Proc. 56, 5874–5890 (2008)

    Article  MathSciNet  Google Scholar 

  18. Farid, H.: Blind inverse gamma correction. IEEE Trans. Image Proc. 10, 1428–1433 (2001)

    Article  MATH  Google Scholar 

  19. Faktor, T., Michaeli, T., Eldar, Y.C.: Nonlinear and nonideal sampling revisited. IEEE Signal Proc. Lett. 17, 205–208 (2010)

    Article  Google Scholar 

  20. Gohberg, I., Kaashoek, M.A., Woerdeman, H.J.: The band method for positive and strictly contractive extension problems: an alternative version and new applications. Integral Equ. Oper. Theory 12, 343–382 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gröchenig, K.: Wiener’s, lemma: theme and variations, an introduction to spectral invariance and its applications. In: Massopust, P., Forster, B. (eds.) Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis. Birkhäuser, Boston (2010)

    Google Scholar 

  22. Gröchenig, K.: Time-frequency analysis of Sjöstrands class. Rev. Mat. Iberoam. 22, 703–724 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gröchenig, K., Klotz, A.: Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices. Constr. Approx. 32, 429–466 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gröchenig, K., Klotz, A.: Norm-controlled inversion in smooth Banach algebras I. J. London Math. Soc. [doi: 10.1112/jlms/jdt004]

  25. Gröchenig, K., Leinert, M.: Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc. 17, 1–18 (2003)

    Article  Google Scholar 

  26. Gröchenig, K., Leinert, M.: Symmetry of matrix algebras and symbolic calculus for infinite matrices. Trans, Amer. Math. Soc. 358, 2695–2711 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gröchenig, K., Rzeszotnik, Z.: Almost diagonlization of pseudodifferntial operators. Ann. Inst. Fourier 58, 2279–2314 (2008)

    Article  MATH  Google Scholar 

  28. Gröchenig, K., Rzeszotnik, Z., Strohmer, T.: Convergence analysis of the finite section method and Banach algebras of matrices. Integral Equ. Oper.Theory 67, 183-202 (2010)

    Article  MATH  Google Scholar 

  29. Gröchenig, K., Strohmer, T.: Pseudodifferential operators on locally compact Abelian groups and Sjöstrands symbol class. J. Reine Angew. Math. 613, 121–146 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Hall, P., Jin, J.: Innovated higher criticism for detecting sparse signals in correlated noise. Ann. Statist. 38, 1686–1732 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Holst, G.C.: CCD Arrays Camera and Displays. SPIE Press, Bellingham (1996)

    Google Scholar 

  32. Jaffard, S., Properiétés des matrices bien localisées: de leur diagonale et quelques applications. Ann. Inst. Henri Poincaré 7, 461–476 (1990)

    MATH  Google Scholar 

  33. Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19, 508–520 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kawai, S., Marimoto, M., Mutoh, N., Teranishi, N.: Photo response analysis in CCD image sensors with a VOD structure. IEEE Trans. Electron Devices 42, 652–655 (1995)

    Article  Google Scholar 

  35. Kissin, E., Shulman, V.S.: Differential properties of some dense subalgebras of C -algebras. Proc. Edinburgh Math. Soc. 37, 399–422 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kose, K., Endoh, K., Inouye, T.: Nonlinear amplitude compression in magnetic resonance imaging: Quantization noise reduction and data memory saving. IEEE Aerosp. Electron. Syst,. Mag. 5, 27–30 (1990)

    Article  Google Scholar 

  37. Krishtal, I.: Wiener’s lemma: pictures at exhibition. Revista Union Matematica Argentina 52, 61–79 (2011)

    MATH  MathSciNet  Google Scholar 

  38. Krishtal, I., Okoudjou, K.A.: Invertibility of the Gabor frame operator on the Wiener amalgam space. J. Approx. Theory 153, 212–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kusuma, J., Maravic, I., Vetterli, M.: Sampling with finite rate of innovation: channel and timing estimatation for UWB and GPS. In: IEEE Conference on Communication, Achorage (2003)

  40. Landau, H.J., Miranker, W.L.: The recovery of distorted band-limited signals. J. Math. Anal. Appl. 2, 97–104 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lu, Y.M., Do, M.N.: A theory for sampling signals from a union of subspaces. IEEE Trans. Signal Proc. 56, 2334–2345 (2008)

    Article  MathSciNet  Google Scholar 

  42. Maravic, I., Vetterli, M.: Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Proc. 53, 2788–2805 (2005)

    Article  MathSciNet  Google Scholar 

  43. Marziliano, P., Vetterli, M., Blu, T.: Sampling and exact reconstruction of bandlimited signals with shot noise. IEEE Trans. Inform. Theory 52, 2230–2233 (2006)

    Article  MathSciNet  Google Scholar 

  44. Mannos, J.L., Sakrison, D.J.: The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. Inform. Theory 20, 525–536 (1974)

    Article  MATH  Google Scholar 

  45. Michaeli, T., Eldar, Y.C.: Xampling at the rate of innovation. IEEE Trans. Signal Proc. 60, 1121–1133 (2012)

    Article  MathSciNet  Google Scholar 

  46. Minty, G.J.: Monotone nonlinear operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  47. Motee, N., Jadbabaie, A.: Optimal control of spatially distributed systems. IEEE Trans. Automatic Control 53(7), 1616–1629 (2008)

    Article  MathSciNet  Google Scholar 

  48. Motee, N., Jadbabaie, A.: Distributed multi-parametric quadratic programming. IEEE Trans. Autom. Control. 54(10), 2279–2289 (2009)

    Article  MathSciNet  Google Scholar 

  49. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of L p (ℝd). J. Funct. Anal. 258, 2422–2452 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  50. Nikolski, N.: In search of the invisible spectrum. Ann. Inst. Fourier Grenoble 49, 1925–1998 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Pejovic, F., Maksimovic, D.: A new algorithm for simulation of power electronic systems using piecewise-linear device models. IEEE Trans. Power Electron. 10, 340–348 (1995)

    Article  Google Scholar 

  52. Rieffel, M.A.: Leibniz seminorms for “matrix algebras converge to the sphere”. In: Quanta of Maths, Volume 11 of Clay Math. Proc., Amer Math. Soc. pp. 543–578. Providence (2010)

  53. Sandberg, I.W.: Notes on PQ theorems. IEEE Trans. Circuit and Systems-I: Fundamental Theory and Applications 41, 303–307 (1994)

    Article  MathSciNet  Google Scholar 

  54. Shafique, K., Shah, M.: Estimation of radiometric response function of a color camera from differently illuminated images. In: Proceedings International Conference Image Process, pp. 2339-2342 (2004)

  55. Shin, C.E., Sun, Q.: Stability of localized operators. J. Funct. Anal. 256, 2417–2439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shukla, P., Dragotti, P.L.: Sampling schemes for multidimensional signals with finite rate of innovation. IEEE Trans. Signal Proc. 55, 3670–3686 (2007)

    Article  MathSciNet  Google Scholar 

  57. Sjöstrand, J.: Wiener type algebra of pseudodifferential operators, Centre de Mathematiques, Ecole Polytechnique, Palaiseau France, Seminaire 19941995, December 1994 (1994)

  58. Sun, Q.: Wiener’s lemma for infinite matrices with polynomial off-diagonal decay. C. Acad. Sci. Paris Ser I 340, 567–570 (2005)

    Article  MATH  Google Scholar 

  59. Sun, Q.: Non-uniform sampling and reconstruction for signals with finite rate of innovations. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  60. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Amer. Math. Soc. 359, 3099–3123 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Sun, Q.: Frames in spaces with finite rate of innovations. Adv. Comput. Math. 28, 301–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  62. Sun, Q.: Local reconstruction for sampling in shift-invariant spaces. Adv. Comput. Math. 32, 335–352 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. Sun, Q.: Wiener’s lemma for infinite matrices II. Constr. Approx. 34, 209–235 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  64. Tao, T.: A quantitative proof of Wiener’s theorem (2005). http://www.math.ucla.edu/tao/preprints/harmonic.html,2005

  65. Unser, M.: Sampling – 50 years after Shannon. Proceedings of the IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  66. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Proc. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  67. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it?- A new look at signal fidelity measures. IEEE Signal Proc. Mag. 98, 98–117 (2009)

    Article  Google Scholar 

  68. Wiener, N.: Tauberian theorem. Ann. Math. 33, 1–100 (1932)

    Article  MathSciNet  Google Scholar 

  69. Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. 1–5. Springer-Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyu Sun.

Additional information

Communicated by: Lixin Shen

Research of the author was supported in part by the National Science Foundation (DMS-1109063)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q. Localized nonlinear functional equations and two sampling problems in signal processing. Adv Comput Math 40, 415–458 (2014). https://doi.org/10.1007/s10444-013-9314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9314-3

Keywords

Mathematics Subject Classifications (2010)

Navigation