Skip to main content
Log in

Restricted p–isometry property and its application for nonconvex compressive sensing

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Compressed sensing is a new scheme which shows the ability to recover sparse signal from fewer measurements, using l 1 minimization. Recently, Chartrand and Staneva showed in Chartrand and Staneva (Inverse Problems 24:1–14, 2009) that the l p minimization with 0 < p < 1 recovers sparse signals from fewer linear measurements than does the l 1 minimization. They proved that l p minimization with 0 < p < 1 recovers S-sparse signals x ∈ ℝN from fewer Gaussian random measurements for some smaller p with probability exceeding

$$ 1 - 1 \Bigg/ {N\choose S}. $$

The first aim of this paper is to show that above result is right for the case of Gaussian random measurements with probability exceeding 1 − 2e  − c(p)M, where M is the numbers of rows of Gaussian random measurements and c(p) is a positive constant that guarantees \(1-2e^{-c(p)M}>1 - 1 / {N\choose S}\) for p smaller. The second purpose of the paper is to show that under certain weaker conditions, decoders Δ p are stable in the sense that they are (2,p) instance optimal for a large class of encoder for 0 < p < 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MATH  Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MATH  Google Scholar 

  4. Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(1), 5406–5425 (2006)

    Article  Google Scholar 

  5. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005)

    Article  Google Scholar 

  6. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  7. Chartrand, R., Staneva, V.: Restricted isometry porperties and nonconvex compressive sensing. Inverse Problems 24, 1–14 (2009)

    MathSciNet  Google Scholar 

  8. Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k–term approximation. J. Am. Math. Soc. 22, 211–245 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeVore, R., Petrova, G., Wojtaczszyk, P.: Instance–optimality in probability with an l 1–minimization decoder. Appl. Comput. Harmon. Anal. 27, 275–288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.: For most large underdetermined systems of linear equations the minimal l 1–norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. USA 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, D.D., Jiang, X.Y., Ye, Y.Y.: A note on the complexity of l p minimization. Math. Program., Ser. B 129, 285–299 (2011). doi:10.1007/s10107-011-0470-2

    Google Scholar 

  14. Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via l q –minimization for 0 < q ≤ 1. Appl. Comput. Harmon. Anal. 26, 395–407 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49, 3320–3325 (2003)

    Article  MathSciNet  Google Scholar 

  16. Saab, R., Yılmaz, Ö.: Sparse revovery by non–convex optimization–instance optimality. Appl. Comput. Harmon. Anal. 29, 30–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wojtaszczyk, P.: Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math. 10, 1–13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Additional information

Communicated by Ding-Xuan Zhou.

This work is supported by NSF of China under grant numbers 10771190, 10971189, 11171299, 11101359, Zhejiang Provincial NSF of China under grants number Y6090091 and the China Postdoctoral Science Foundation under grant 20100481430.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Li, S. Restricted p–isometry property and its application for nonconvex compressive sensing. Adv Comput Math 37, 441–452 (2012). https://doi.org/10.1007/s10444-011-9219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9219-y

Keywords

Mathematics Subject Classifications (2010)

Navigation