Skip to main content
Log in

Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A singularly perturbed semilinear reaction-diffusion problem in the unit cube, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio condition is imposed. This result is obtained by combining (i) sharp bounds on the Green’s function of the continuous differential operator in the Sobolev W 1,1 and W 2,1 norms and (ii) a special representation of the residual in terms of an arbitrary current mesh and the current computed solution. Numerical results on a priori chosen meshes are presented that support our theoretical estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Babuška, I.: Reliable and robust a posteriori error estimating for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 36, 331–353 (1999)

    Article  MathSciNet  Google Scholar 

  2. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Teubner, Stuttgart (1999)

    Google Scholar 

  3. Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford University Press, New York (2001)

  4. Bakhvalov, N.S.: Towards optimization of methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. i Mat. Fiz. 9, 841–859 (1969, in Russian)

    MATH  Google Scholar 

  5. Boglaev, I.: On monotone iterative methods for a nonlinear singularly perturbed reaction-diffusion problem. J. Comput. Appl. Math. 162, 445–466 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro-Diaz, M.J., Hetch, F.F., Mohammadi, B., Pironneau, O.: Anisotropic unstructed mesh adaptation for flow simulations. Int. J. Numer. Methods Fluids 25, 475–491 (1997)

    Article  MATH  Google Scholar 

  7. Chen, L., Sun, P., Xu, J.: Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p -norm. Math. Comput. 76, 179–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clavero, C., Gracia, J.L., ’Riordan, E.: A parameter robust numerical method for a two dimensional reaction-diffusion problem. Math. Comput. 74, 1743–1758 (2005)

    Article  MATH  Google Scholar 

  9. D’Azevedo, E.F.: Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Statist. Comput. 12, 755–786 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Azevedo, E.F., Simpson, R.B.: On optimal interpolation triangle incidences. SIAM J. Sci. Statist. Comput. 10, 1063–1075 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolejší, V., Felcman, J.: Anisotropic mesh adaptation for numerical solution of boundary value problems. Numer. Methods Partial Differ. Equ. 20, 576–608 (2004)

    Article  MATH  Google Scholar 

  12. Eriksson, K.: An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models Methods Appl. Sci. 4, 313–329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1998)

    Google Scholar 

  14. Guzmán, J., Leykekhman, D., Rossmann, J., Schatz, A.H.: Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Habashi, W.G., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., Vallet, M.-G.: Anistopic mesh adaptation: towards user independent, mesh independent and solver independent CFD. Part I: general principles. Int. J. Numer. Methods Fluids 32, 725–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kopteva, N.: Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 423–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kopteva, N.: Maximum norm a posteriori error estimates for a one-dimensional singularly perturbed semilinear reaction-diffusion problem. IMA J. Numer. Anal. 27, 576–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kopteva, N.: Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem. Math. Comput. 76, 631–646 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kopteva, N.: Maximum norm a posteriori error estimate for a 2d singularly perturbed reaction-diffusion problem. SIAM J. Numer. Anal. 46, 1602–1618 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopteva, N., Stynes, M.: A robust adaptive method for a quasilinear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunert, G., Verfürth, R.: Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86, 283–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kunert, G.: Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. A posteriori error estimation and adaptive computational methods. Adv. Comput. Math. 15, 237–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  24. Linß, T.: Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem. Nord. Tidskr. Inf. Behandl. 47, 379–391 (2007)

    MATH  Google Scholar 

  25. Linß, T., Stynes, M.: The SDFEM on Shishkin meshes for linear convection-diffusion problems. Numer. Math. 87, 457–484 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Solution of Singularly Perturbed Problems with ε-uniform Numerical Methods—Introduction to the Theory of Linear Problems in One and Two Dimensions, World Scientific, Singapore (1996)

    Google Scholar 

  27. Nochetto, R.H.: Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1–22 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, London (2001)

    Book  Google Scholar 

  29. Remacle, J., Li, X., Shephard, M.S., Flaherty, J.E.: Anisotropic adaptive simulation of transient flows using discountinuous Galerkin methods. Internat. J. Numer. Methods Eng. 62, 899–923 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schatz, A.H., Wahlbin, L.B.: On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions. Math. Comput. 40, 47–88 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Kopteva.

Additional information

Communicated by Martin Stynes.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under the Research Frontiers Programme 2008; Grant 08/RFP/MTH1536.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadha, N.M., Kopteva, N. Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem. Adv Comput Math 35, 33–55 (2011). https://doi.org/10.1007/s10444-010-9163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9163-2

Keywords

Mathematics Subject Classifications (2010)

Navigation