Skip to main content
Log in

Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we discuss an abstract iteration scheme for the calculation of the smallest eigenvalue of an elliptic operator eigenvalue problem. A short and geometric proof based on the preconditioned inverse iteration (PINVIT) for matrices (Knyazev and Neymeyr, SIAM J Matrix Anal 31:621–628, 2009) is extended to the case of operators. We show that convergence is retained up to any tolerance if one only uses approximate applications of operators which leads to the perturbed preconditioned inverse iteration (PPINVIT). We then analyze the Besov regularity of the eigenfunctions of the Poisson eigenvalue problem on a polygonal domain, showing the advantage of an adaptive solver to uniform refinement when using a stable wavelet base. A numerical example for PPINVIT, applied to the model problem on the L-shaped domain, is shown to reproduce the predicted behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier-North Holland, Amsterdam (1991)

    Google Scholar 

  2. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bramble, J.H., Pasciak, J.E., Knyazev, A.V.: A subspace preconditioning algorithm for eigenvector/eigenvalue computation. Adv. Comput. Math. 6(2), 159–189 (1996)

    Article  MathSciNet  Google Scholar 

  4. Carstensen, C., Gedicke, J.: An oscillation-free adaptive fem for symmetric eigenvalue problems. Tech. rep., DFG Research Center MATHEON (2008)

  5. Cohen, A.: Numerical Analysis of Wavelet Methods. North-Holland, Amsterdam (2003)

    MATH  Google Scholar 

  6. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70(233), 27–75 (2001)

    MATH  MathSciNet  Google Scholar 

  7. Dahlke, S.: Besov regularity for elliptic boundary value problems in polygonal domains. Appl. Math. Lett. 12(6), 31–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. Partial Differ. Equ. 22, 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahmen, W., Rohwedder, T., Schneider, R., Zeiser, A.: Adaptive eigenvalue computation - complexity estimates. Numer. Math. 110, 277–312 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dahmen, W., Schneider, R.: Wavelets on manifolds. I: construction and domain decomposition. SIAM J. Math. Anal. 31(1), 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  12. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  13. D’yakonov, E., Orekhov, M.: Minimization of the computational labor in determining the first eigenvalues of differential operators. Math. Notes 27, 382–391 (1980)

    MATH  MathSciNet  Google Scholar 

  14. Gantumur, T., Harbrecht, H., Stevenson, R.: An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76, 615–629 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Giani, S., Graham, I.G.: A convergent adaptive method for elliptic eigenvalue problems. Tech. rep., Isaac Newton Institut, Cambridge (2007)

  16. Godunov, S., Ogneva, V., Prokopov, G.: On the convergence of the modified method of steepest descent in the calculation of eigenvalues. Am. Math. Soc. Transl. II Ser. 105, 111–116 (1976)

    MATH  Google Scholar 

  17. Grisvard, P.: Singularities in Boundary Value Problems. Springer, New York (1992)

    MATH  Google Scholar 

  18. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1–4), 107–138 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kamm, C.: A posteriori error estimation in numerical methods for solving self-adjoint eigenvalue problems. Master’s thesis, TU Berlin (2007). http://www.math.tu-berlin.de/~kamm/articles/diplom-kamm.pdf

  20. Knyazev, A., Neymeyr, K.: Gradient flow approach to geometric convergence analysis of preconditioned eigensolvers. SIAM J. Matrix Anal. 31, 621–628 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knyazev, A.V., Neymeyr, K.: A geometric theory for preconditioned inverse iteration. III: a short and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl. 358(1–3), 95–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kozlov, V.A., Mazýa, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  23. Neymeyr, K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Samokish, B.: The steepest descent method for an eigenvalue problem with semi-bounded operators. Izvestiya Vuzov Math. 5, 105–114 (1958) (In Russian)

    Google Scholar 

  25. Vorloeper, J.: Adaptive wavelet methoden fÃ\(\frac{1}{4}\)r operator Gleichungen—quantitative analyse und softwarekonzepte. Ph.D. thesis, RWTH Aachen (2009, in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Schneider.

Additional information

Communicated by Yuesheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohwedder, T., Schneider, R. & Zeiser, A. Perturbed preconditioned inverse iteration for operator eigenvalue problems with applications to adaptive wavelet discretization. Adv Comput Math 34, 43–66 (2011). https://doi.org/10.1007/s10444-009-9141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9141-8

Keywords

Mathematics Subject Classifications (2000)

Navigation