Skip to main content
Log in

Discrete variational integrators and optimal control theory

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A geometric derivation of numerical integrators for optimal control problems is proposed. It is based in the classical technique of generating functions adapted to the special features of optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Ahlbrandt, Equivalence of discrete Euler equations and discrete Hamiltonian systems, J. Math. Anal. Appl. 180 (1993) 498–478.

    Article  MATH  MathSciNet  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Text in Mathematics, Vol. 60 (Springer-Verlag, New York, 1978).

    MATH  Google Scholar 

  3. A.I. Bobenko and Y.B. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys. 49 (1999) 79–93.

    Article  MATH  MathSciNet  Google Scholar 

  4. A.I. Bobenko and Y.B. Suris, Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top, Comm. Math. Phys. 204 (1999) 147–188.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.A. Cadzow, Discrete calculus of variations, Internat. J. Control. 11 (1970) 393–407.

    MATH  Google Scholar 

  6. P.J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990) 231–259.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Chinea, M. de León and J.C. Marrero, The constraint algorithm for time-dependent Lagrangians, J. Math. Phys. 35(7) (1994) 3410–3447.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, Vol. 1793 (Springer-Verlag, New York, 2002).

    MATH  Google Scholar 

  9. J. Cortés and S. Martínez, Nonholonomic integrators, Nonlinearity 14 (2001) 1365–1392.

    Article  MATH  MathSciNet  Google Scholar 

  10. P.A.M. Dirac, Lecture on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, 1964).

    Google Scholar 

  11. L.H. Erbe and P. Yan, Disconjugancy for linear Hamiltonian difference systems, J. Math. Anal. Appl. 167 (1992) 355–367.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.J. Gotay and J.M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré A 30 (1979) 129–142.

    MATH  MathSciNet  Google Scholar 

  13. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Vol. 31 (Springer-Verlag, Berlin, 2002).

    MATH  Google Scholar 

  14. G. Jaroszkiewicz and K. Norton, Principes of discrete time mechanics I: Particle systems, J. Phys. A 30 (1997) 3115–3144.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Jaroszkiewicz and K. Norton, Principes of discrete time mechanics II: Classical field theory, J. Phys. A 30 (1997) 3145–3163.

    Article  MATH  MathSciNet  Google Scholar 

  16. B.W. Jordan and E. Polak, Theory of a class of discrete optimal control systems, J. Electron. Control 17 (1964) 697–711.

    MathSciNet  Google Scholar 

  17. C. Kane, J.E. Marsden and M. Ortiz, Symplectic energy-momentum integrators, J. Math. Phys. 40 (1999) 3353–3371.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Kane, J.E. Marsden, M. Ortiz and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, Internat. J. Numer. Math. Eng. 49 (2000) 1295–1325.

    Article  MATH  MathSciNet  Google Scholar 

  19. T.D. Lee, Can time be a discrete dynamical variable? Phys. Lett. B 122 (1983) 217–220.

    Article  Google Scholar 

  20. T.D. Lee, Difference equations and conservation laws, J. Statist. Phys. 46 (1987) 843–860.

    Article  MathSciNet  Google Scholar 

  21. M. de León, J.C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets, J. Phys. A: Math. Gen. 29 (1996) 6843–6859.

    Article  MATH  Google Scholar 

  22. M. de León, D. Martín de Diego and A. Santamaría, Geometric integrators and nonholonomic mechanics, J. Math. Phys. 45(3) (2004) 1042–1064.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. de León, D. Martín de Diego and A. Santamaría, Geometric numerical integration of nonholonomic systems and optimal control problems, in: 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville 2003 (2003) pp. 163–168.

  24. M. de León and D. Martín de Diego, Variational integrators and time-dependent Lagrangian systems, Rep. Math. Phys. 49(2/3) (2002) 183–192.

    Article  MATH  MathSciNet  Google Scholar 

  25. F.L. Lewis, Optimal Control (Wiley, New York, 1986).

    MATH  Google Scholar 

  26. S. Maeda, Canonical structure and symmetries for discrete systems, Math. Japonica 25 (1980) 405–420.

    MATH  Google Scholar 

  27. S. Maeda, Extension of discrete Noether theorem, Math. Japonica 26 (1981) 85–90.

    MATH  Google Scholar 

  28. J.E. Marsden, G.W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs', Comm. Math. Phys. 199 (1998) 351–395.

    Article  MATH  MathSciNet  Google Scholar 

  29. J.E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica (2001) 357–514.

  30. J. Moser and A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys. 139 (1991) 217–243.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems (Springer-Verlag, New York, 1990).

    MATH  Google Scholar 

  32. K. Norton and G. Jaroszkiewicz, Principes of discrete time mechanics, III: Quantum field theory, J. Phys. A 31 (1998) 977–1000.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Pandolfi, C. Kane, J.E. Marsden and M. Ortiz, Time-discretized variational formulation of nonsmooth frictional contact, Int. J. Num. Methods in Engineering 53 (2002) 1801–1829.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, London, 1994).

    MATH  Google Scholar 

  35. Y. Shi, Symplectic structure of discrete Hamiltonian systems, J. Math. Anal. Appl. 266 (2002) 472–478.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel de León.

Additional information

Communicated by J. Carnicer and J.M. Peña

Dedicated to Prof. Mariano Gasca on the occasion of his 60th birthday.

Mathematics subject classifications (2000)

37H15, 65P10, 49J15, 70H20

Rights and permissions

Reprints and permissions

About this article

Cite this article

de León, M., Martín de Diego, D. & Santamaría-Merino, A. Discrete variational integrators and optimal control theory. Adv Comput Math 26, 251–268 (2007). https://doi.org/10.1007/s10444-004-4093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-4093-5

Keywords

Navigation