Skip to main content
Log in

A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions (x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kosek, M., Sejak, P.: Visualization of voids in actual C/C woven composite structure. Compos. Sci. Technol. 69, 1465–1469 (2009)

    Article  Google Scholar 

  2. Dagli, L., Remonf, Y.: Identification of the non-linear behaviour a 4D carbon-carbon material designed for aeronautic application. Appl. Compos. Mater. 9, 1–15 (2002)

    Article  Google Scholar 

  3. Fu, Q.G., Nan, X.Y., Li, H.J., Chen, X., Wang, W.L.: Pre-oxidation of carbon/carbon composites to improve the bonding strength of Ti-Ni-Si joints. Mater. Sci. Eng. A 620, 428–434 (2015)

    Article  Google Scholar 

  4. Don, J., Wang, Z.: Effects of anti-oxidant migration on friction and wear of C/C aircraft brakes. Appl. Compos. Mater. 16, 73–81 (2009)

    Article  Google Scholar 

  5. Zhang, L.L., Li, H.J., Li, K.Z., Zhang, S.Y., Fu, Q.G., Zhang, Y.L., Liu, S.J.: Double-layer TC4/Sr substituted hydroxyapatite bioactive coating for carbon/carbon composites. Ceram. Int. 41, 427–435 (2015)

    Article  Google Scholar 

  6. Ren, X.R., Li, H.J., Fu, Q.G., Li, K.Z.: Oxidation protective TaB2-SiC gradient coating to protect SiC-Si coated carbon/carbon composites against oxidation. Compos. Part B 66, 174–179 (2014)

    Article  Google Scholar 

  7. Yin, J., Zhang, H.B., Xiong, X., Zuo, J.L., Huang, B.Y.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237–245 (2009)

    Article  Google Scholar 

  8. Remond, Y., Wagner, C.: Two experimental methods to measure the damaged subsurface of carbon–carbon brake discs. Appl. Compos. Mater. 6, 185–201 (1999)

    Article  Google Scholar 

  9. Bamborin, M.Y., Kolesnikov, S.A.: Formation of the thermal conductivity of carbon-carbon composites. Refract. Ind. Ceram. 54(1), 29–34 (2013)

    Article  Google Scholar 

  10. Al-Nassar, Y.N.: Prediction of thermal conductivity of air voided-fiber-reinforced composite laminates part II: 3D simulation. Heat Mass Transf. 43, 117–122 (2006)

    Article  Google Scholar 

  11. Wang, M., Kang, Q.J., Pan, N.: Thermal conductivity enhancement of carbon fiber composites. Apll. Therm. Eng. 29, 418–421 (2009)

    Article  Google Scholar 

  12. Alghamdi, A., Mummery, P., Sheikh, M.: A.: Multi-scale 3D image-based modelling of a carbon/carbon composite. Modelling Simul. Mater. Sci. Eng. 21, 085014 (2013)

    Google Scholar 

  13. Luo, R.Y., Liu, T., Li, J.S., Zhang, H.B., Chen, Z.J., Tian, G.L.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42, 2887–2895 (2004)

    Article  Google Scholar 

  14. Qiu, L., Zheng, X.H., Zhu, J., Su, G.P., Tang, D.W.: The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon 51, 265–273 (2013)

    Article  Google Scholar 

  15. Gallego, N.C., Edie, D.D., Nysten, B., Issi, J.P., Treleaven, J.W., Deshpande, G.V.: The thermal conductivity of ribbon-shaped carbon fibers. Carbon 38, 1003–1010 (2000)

    Article  Google Scholar 

  16. Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68, 413–425 (2014)

    Article  Google Scholar 

  17. Yuan, G.M., Li, X.K., Dong, Z.J., Xiong, X.Q., Rand, B., Cui, Z.W., Cong, Y., Zhang, J., Li, Y.J., Zhang, Z.W., Wang, J.S.: The structure and properties of ribbon-shaped carbon fibers with high orientation. Carbon 68, 426–439 (2014)

    Article  Google Scholar 

  18. Chen, J., Xion, X., Xiao, P.: Thermal conductivity of unidirectional carbon/carbon composites with different carbon matrixes. Mater. Des. 30, 1413–1416 (2009)

    Article  Google Scholar 

  19. Silva, C., Marotta, E., Schuller, M.: In-Plane thermal conductivity in thin carbon fiber composites. J. Thermophys. Heat Transf. 21(3), 460–467 (2007)

    Article  Google Scholar 

  20. Grujicic, M., Zhao, C.L., Dusel, E.C., Morgan, D.R., Miller, R.S., Beasley, D.E.: Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Sci. 41, 8244–8256 (2006)

    Article  Google Scholar 

  21. Kumlutaş, D., Tavman, İ.H., Çoban, M.T.: Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 63(1), 113–117 (2003)

    Article  Google Scholar 

  22. Zhou, W.Y., Qi, S.H., Tu, C.C., Zhao, H.Z.: Novel heat conductive composite silicon rubber. J. Appl. Polym. Sci. 104(4), 2478–2483 (2007)

    Article  Google Scholar 

  23. Charles, J.A., Wilson, D.W.: A model of passive thermal nondestrictive evaluation of composite laminates. Polym. Compos. 2, 105 (1981)

    Article  Google Scholar 

  24. Deng, F., Zheng, Q.S., Wang, L.F., Nan, C.W.: Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 90(2), 021914 (2007)

    Article  Google Scholar 

  25. Turias, I.J., Gutierrez, J.M., Galindo, P.L.: Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks. Compos. Sci. Technol. 65(3–4), 609–619 (2005)

    Article  Google Scholar 

  26. Kulkarni, M.R., Brady, R.P.: A model of global thermal conductivity in laminated carbon/carbon composites. Compos. Sci. Technol. 57, 277–285 (1997)

    Article  Google Scholar 

  27. Vorel, J., Šejnoha, M.: Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method. Struct. Eng. Mech. 33(4), 429–446 (2009)

    Article  Google Scholar 

  28. Jiang, D.L., Li, L.T., Ouyang, S.X., Shi, J.L.: China Materials Engineering Canon: Inorganic Non-metallic Materials Engineering, vol. 9, pp. 470–472. Chemical Industry Press, Beijing (2006). in Chinese

    Google Scholar 

  29. Pradere, C., Bastale, J.C., Goyhénèche, J.M., Pailler, R., Dilhaire, S.: Thermal properties of carbon fibers at very high temperature. Carbon 47, 737–743 (2009)

    Article  Google Scholar 

  30. Ai, S.G., Fang, D.N., He, R.J., Pei, Y.M.: Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/C composites. Compos. Part B 71, 113–121 (2015)

    Article  Google Scholar 

  31. Ai, S.G., Zhu, X.L., Mao, Y.Q., Pei, Y.M., Fang, D.N.: Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment. Appl. Compos. Mater. 21(4), 603–614 (2014)

    Article  Google Scholar 

  32. Radcliffe, D.J., Rosenberg, H.M.: The thermal conductivity of glass-fiber and carbon-fiber/epoxy composites from 2 to 80 K. Cryogenics 22(5), 245 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundations of China (No. 11202007, 11232001) and the Foundation of Beijing Jiaotong University (KCRC14002536) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai Shigang or He Rujie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigang, A., Rujie, H. & Yongmao, P. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature. Appl Compos Mater 22, 823–835 (2015). https://doi.org/10.1007/s10443-015-9438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9438-3

Keywords

Navigation