Skip to main content
Log in

Realistic microstructure-based two-scale finite element analysis of 3D C/C composite for effective thermal expansion coefficient

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

A real microstructure-based finite element model of 3D-hybrid carbon/carbon (3DH C/C) composite is used for the prediction of effective thermal expansion coefficient over the full temperature range (27–2227 °C). The representative volume elements of the real microstructure of 3DH C/C composite include the realistic features such as cross-sectional distortions of the bundle and irregularly shaped voids. Two-scale homogenization approach has been utilized to determine the effective thermomechanical behavior of the composite. The effective elastic properties of the fiber bundles are firstly obtained using the mean-field homogenization approach also called the Mori–Tanaka approach. Later, the computational homogenization approach is utilized for the prediction of effective coefficients of thermal expansion (CTEs) of bundles and 3DH C/C composite. The effective CTEs obtained for 3DH C/C composite are found in good agreement with those obtained through experiments in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rohini Devi, G., Rama, R.K.: Carbon carbon composites: an overview. Def. Sci. J. 43(4), 369–383 (1993)

    Article  Google Scholar 

  2. Kumar, S., Shekar, C.K., Jana, B., Manocha, L.M., Prasad, N.E.: C/C and C/SiC composites for aerospace applications. In: Prasad, N.E., Wanhill, R.J.H. (eds.) Aerospace Materials and Material Technologies, pp. 343–70. Springer, New Delhi (2017)

    Chapter  Google Scholar 

  3. Voigt, W.: Theoretische studienuber die elestizitatsverhaltnisse der crystalle. Annalen der Physic 38, 573–587 (1889)

    Article  Google Scholar 

  4. Reuss, A.: Berechnung der fliebgrenze von crystallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitchrift fur angewandte Mathematik und Mechanik 9, 49–58 (1922)

    Article  Google Scholar 

  5. Levin, V.M.: Thermal expansion coefficient of heterogeneous material. Mech. Solids 2, 58–61 (1967)

    Google Scholar 

  6. FoFy, V.: Elastic constants and thermal expansion of certain bodies with inhomogeneous regular structures. Soviet Phys. Doklady 11, 176–182 (1966)

    Google Scholar 

  7. Schapery, R.A.: Thermal expansion coefficient of composite materials based on energy principles. J. Compos. Mater. 2, 380–404 (1968)

    Article  Google Scholar 

  8. Chamis, C.C., Sendeckyj, G.P.: Critique on theories predicting thermoelastic properties of fibrous composite. J. Compos. Mater. 2(3), 332–358 (1968)

    Article  Google Scholar 

  9. Chamberlain, N.J.: Derivation of expansion Coefficients for a fiber reinforced composites. BAC SON(P) report 1968: 33, British Aircraft Corporation, London

  10. Rosen, B.W., Hashin, Z.: Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci. 8(2), 157–173 (1970)

    Article  Google Scholar 

  11. Gowayed, Y., Zou, W., Gross, S.: An analytical approach to evaluate the coefficients of thermal expansion of textile composite materials. Polym. Compos. 21(5), 814–820 (2000)

    Article  Google Scholar 

  12. Farhan, S., Wang, R., Li, K.: Directional thermophysical, ablative and compressive behavior of 3D carbon/carbon composites. Ceram. Int. 41, 9763–9769 (2015)

    Article  Google Scholar 

  13. Luo, R.Y., Liu, T., Li, J.S., Zhang, H., Chen, Z., Tian, G.L.: Thermo-physical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42, 2887–2895 (2004)

    Article  Google Scholar 

  14. Liao, X., Li, H., Xu, W., Li, K.: Study on the thermal expansion properties of C/C composites. J. Mater Sci. 42, 3435–3439 (2007)

    Article  Google Scholar 

  15. Wang, P., Zhang, S., Li, H., Kong, J., Li, W., Zaman, W.: Variation of thermal expansion of carbon/carbon/ composite from 850 to 2500°C. Ceram. Int. 40, 1273–1276 (2014)

    Article  Google Scholar 

  16. Kumar, S., Kumar, A., Shukla, A., Devi, G.R., Gupta, A.K.: Investigation of thermal expansion of 3D-stitched C-SiC composite. J. Eur. Ceram. Soc. 29, 2849–2855 (2009)

    Article  Google Scholar 

  17. Kumar, S., Kumar, A., Devi, G.R., Gupta, A.K.: Preparation of 3D orthogonal woven C-SiC composite and its characterization for thermo-mechanical properties. Mater. Sci. Eng. A 528, 6210–6216 (2011)

    Article  Google Scholar 

  18. Bowles, E.D., Tompkins, S.S.: Prediction of coefficients of thermal expansion for unidirectional composites. J. Compos. Mater. 23(4), 370–388 (1989)

    Article  Google Scholar 

  19. Islam, R., Sjolind, S.G., Pramila, A.: Finite element analysis of linear thermal expansion coefficient of unidirectional cracked composite. J. Compos. Mater. 35(19), 1762–1776 (2001)

    Article  Google Scholar 

  20. Karadeniz, Z.H., Kumlutas, D.: A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78, 1–10 (2007)

    Article  Google Scholar 

  21. Ran, Z., Yan, Y., Li, J., Qi, Z., Lei, Y.: Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites. Chin. J. Aeronaut. 27, 1180–1187 (2014)

    Article  Google Scholar 

  22. Dong, K., Zhang, J., Cao, M., Wang, M., Gu, B., Sun, B.A.: Mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy unidirectional composites based on periodic temperature and displacement boundary conditions. Polym. Test. 55, 44–60 (2016)

    Article  Google Scholar 

  23. Ai, S., Fu, H., He, R., Pei, Y.: Multiscale modeling of thermal expansion coefficient of C/C composites at high temperature. Mater. Des. 82, 181–188 (2015)

    Article  Google Scholar 

  24. Nasution, M.R.E., Watanabe, N., Kondo, A., Yudhanto, A.: Thermomechanical properties and stress analysis of 3D textile composites by asymptotic expansion homogenization method. Compos. Part B 60, 378–391 (2014)

    Article  Google Scholar 

  25. Dong, K., Peng, X., Zhang, J., Gu, B., Sun, B.: Temperature dependent thermal expansion behavior of carbon fiber/epoxy plain woven composite: experimental and numerical studies. Compos. Struct. 176, 329–341 (2017)

    Article  Google Scholar 

  26. Dasgupta, A., Agarwal, R.K., Bhandarkar, S.M.: Three-dimensional modeling of woven fabric composites for effective thermo-mechanical and thermal properties. Compos. Sci. Technol. 56, 209–223 (1996)

    Article  Google Scholar 

  27. Hu, C.X., Li, H.J., Zhang, S.Y., Song, Y.S.: Numerical simulation on thermal expansion coefficient of 3D braided C/C composites. Rare Met. 33, 99–106 (2013)

    Article  Google Scholar 

  28. Lu, Z., Wang, C., Xia, B., Zhou, Y.: Effect of interfacial properties on the thermophysical properties of 3D Braided Composites: 3D multiscale finite element study. Polym. Compos. 35, 1690–1700 (2014)

    Article  Google Scholar 

  29. Wang, H., Cao, M., Siddique, A., Sun, B., Gu, B.: Numerical analysis of thermal expansion behaviors and interfacial thermal stress of 3D braided composite materials. Comput. Mater. Sci. 138, 77–91 (2017)

    Article  Google Scholar 

  30. Zhai, J., Cheng, S., Zeng, T., Wang, Z., Jiang, L.: Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 176, 664–672 (2017)

    Article  Google Scholar 

  31. Mohajerjesbi, S.: Prediction for coefficient of thermal expansion of three-dimensional braided composites. AIAA J. 35, 141–144 (1997)

    Article  Google Scholar 

  32. Jiang, L.L., Xu, G.D., Cheng, S., Lu, X.M., Zeng, T.: Finite element analysis of thermo-mechanical properties of 3D braided composites. Appl. Compos. Mater. 21, 325–340 (2014)

    Article  Google Scholar 

  33. Sharma, R., Deshpande, V.V., Bhgat, A.R., Mahajan, P., Mittal, R.K.: X-ray tomographical observations of cracks and voids in 3D carbon/carbon composites. Carbon 60, 335–345 (2013)

    Article  Google Scholar 

  34. Sharma, R., Mahajan, P., Mittal, R.K.: Fiber bundle push-out test and image based finite element simulation for 3D carbon/carbon composites. Carbon 50, 2717–2725 (2012)

    Article  Google Scholar 

  35. Sharma, R., Bhagat, A.R., Mahajan, P.: Finite element analysis for mechanical characterization of 4D inplane carbon/carbon composite with imperfect microstructure. Latin Am. J. Solids Struct. 11, 170–184 (2014)

    Article  Google Scholar 

  36. Sharma, R., Mahajan, P., Mital, R.K.: Image based finite element analysis of 3D orthogonal Carbon/Carbon (C/C) composite. In: Proceedings of the World Congress, London, UK (2010)

  37. Alghamdi, A., Mummery, P., Sheikh, M.: Multi-scale 3D image-based modeling of a carbon/carbon composite. Model. Simul. Mater. Sci. Eng. 21, 1–14 (2013)

    Article  Google Scholar 

  38. Zahid, M., Sharma, R., Bhagat, A.R., Abbas, S., Yadav, A., Mahajan, P.: Micro-structurally informed finite element analysis of carbon/carbon composites for effective thermal conductivity. Compos. Struct. 226, 111221 (2019)

    Article  Google Scholar 

  39. Rao, M.V., Mahajan, P., Mittal, R.K.: Effect of architecture on mechanical properties of carbon/carbon composites. Compos. Struct. 83, 131–142 (2008)

    Article  Google Scholar 

  40. Huang, Z., Liu, L.: A notes on MORI-TANAKA’S method. Acta Mech. Solida Sin. 27(3), 234–244 (2014)

    Article  Google Scholar 

  41. Abaqus CAE user’s guide, section-82.16, ABAQUS 6.14, SIMULIA. https://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.14/books/usi/default.htm

  42. Shokrie, M.M.: Residual stresses in composite materials. Woodhead publishing limited, London (2014)

    Book  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the SASE, DRDO, Manali, India, ASL, DRDO Hyderabad, India, for providing X-ray Scanning facility and Applied Mechanics Department, IIT Delhi, India, for the image processing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Sharma.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M., Sharma, R. & Bhagat, A.R. Realistic microstructure-based two-scale finite element analysis of 3D C/C composite for effective thermal expansion coefficient. Int J Adv Eng Sci Appl Math 12, 81–93 (2020). https://doi.org/10.1007/s12572-020-00272-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-020-00272-8

Keywords

Navigation