Skip to main content
Log in

Properties of Life: Toward a Coherent Understanding of the Organism

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The question of specific properties of life compared to nonliving things accompanied biology throughout its history. At times this question generated major controversies with largely diverging opinions. Basically, mechanistic thinkers, who tried to understand organismic functions in terms of nonliving machines, were opposed by those who tried to describe specific properties or even special forces being active within living entities. As this question included the human body, these controversies always have been of special relevance to our self-image and also touched practical issues of medicine. During the second half of the twentieth century, it seemed to be resolved that organisms are explainable basically as physicochemical machines. Especially from the perspective of molecular biology, it seemed to be clear that organisms need to be explained solely by the chemical functions of their component parts, although some resistance to this view never ceased. This research program has been working quite successfully, so that science today knows a lot about the physiological and chemical processes within organisms. However, again new doubts arise questioning whether the mere continuation of this analytical approach will finally generate a fundamental understanding of living entities. At the beginning of the twenty-first century the quest for a new synthesis actually comes from analytical empiricists themselves. The hypothesis of the present paper is that empirical research has been developed far enough today, that it reveals by itself the materials and the prerequisites to understand more of the specific properties of life. Without recourse to mysterious forces, it is possible to generate answers to this age-old question, just using recent, empirically generated knowledge. This view does not contradict the results of reductionistic research, but rather grants them meaning within the context of organismic systems and also may increase their practical usefulness. Although several of these properties have been discussed before, different authors usually concentrated on a single one or some of them. The paper describes ten specific properties of living entities as they can be deduced from contemporary science. The aim is to demonstrate that the results of empirical research show both the necessity as well as the possibility of the development of a new conception of life to build a coherent understanding of organismic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnellos A, Spyrou T, Darzentas J (2010) Towards the naturalization of agency based on an interactivist account of autonomy. New Ideas Psychol 28(3):296–311

    Article  Google Scholar 

  • Barandiaran XE, Egbert MD (2013) Norm-establishing and norm-following in autonomous agency. Artif Life 91(2):1–24. doi:10.1162/ARTL_a_00094

    Google Scholar 

  • Barandiaran XE, Di Paolo E, Rohde M (2009) Defining agency. Individuality, normativity, asymmetry and spatio-temporality in action. J Adapt Behav 17(5):367–386

    Article  Google Scholar 

  • Bechtel W (2007) Biological mechanisms: organized to maintain autonomy. In: Boogerd F, Bruggeman FJ, Hofmeyr JHS, Westerhoff HV (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 269–302

    Chapter  Google Scholar 

  • Bechtel W (2010) The downs and ups of mechanistic research: circadian rhythm research as an exemplar. Erkenntnis 73:313–328. doi:10.1007/s10670-010-9234-2

    Article  Google Scholar 

  • Bock G, Goode J (eds) (1998) The limits of reductionism in biology. In: Papers from the symposium held at the Novartis Foundation, London 1997. Wiley, Chichester

  • Boogerd F, Bruggeman FJ, Hofmeyr JHS, Westerhoff HV (eds) (2007) Systems biology: philosophical foundations. Elsevier, Amsterdam

    Google Scholar 

  • Buchman TG (2002) The community of the self. Nature 420:246–251

    Article  Google Scholar 

  • Capra F, Luisi PL (2014) The systems view of life. A unifying vision. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Carroll SB (2005) Endless forms most beautiful. The new science of evo devo and the making of the animal kingdom. Norton, New York

    Google Scholar 

  • Cavalier-Smith T (2004) The membranome and membrane heredity in development and evolution. In: Horner DS, Hirt RP (eds) Organelles, genomes and eukaryote phylogeny: an evolutionary synthesis in the age of genomics. CRC Press, Boca Raton, pp 335–351

    Chapter  Google Scholar 

  • Cleland CE (2013) Is a general theory of life possible? seeking the nature of life in the context of a single Example. Biol Theory 7(4):368–379

    Article  Google Scholar 

  • Cleland CE, Chyba CF (2002) Defining ‘life’. Orig Life Evol Biosph 32:387–393

    Article  Google Scholar 

  • Denton MJ, Kumaramanickavel G, Legge M (2013) Cells as irreducible wholes: the failure of mechanism and the possibility of an organicist revival. Biol Philos 28(1):31–52. doi:10.1007/s10539-011-9285-z

    Article  Google Scholar 

  • Deppert W, Kliemt H, Lohff B, Schaefer J (eds) (1992) Wissenschaftstheorien in der Medizin. Ein Symposium. de Gruyter, Berlin

    Google Scholar 

  • Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenol Cognit Sci 4:429–452

    Article  Google Scholar 

  • Downes SM (2001) The ontogeny of information. Perspect Biol Med 44(3):464–469

    Article  Google Scholar 

  • Drack M, Apftaler W (2007) Is Paul Weiss’ and Ludwig von Bertalanffy’s system thinking still valid today? Syst Res Behav Sci 24(5):537–546

    Article  Google Scholar 

  • Drack M, Wolkenhauer O (2011) System approaches of Weiss and Bertalanffy and their relevance for systems biology today. Semin Cancer Biol 21:150–155

    Article  Google Scholar 

  • Drack M, Apftaler W, Pouvreau D (2007) On the making of a system theory of life: Paul A Weiss and Ludwig von Bertalanffy’s conceptual connection. Q Rev Biol 82:349–373

    Article  Google Scholar 

  • Du Bois-Reymond EH (1872) Über die Grenzen des Naturerkennens. Veit, Leipzig

    Google Scholar 

  • Duboule D (2003) Time for chronomics? Science 301:277

    Article  Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer, Sunderland

    Google Scholar 

  • Dupré J (2012) Processes of life: essays in the philosophy of biology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Eigen M (1987) Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie. Piper Verlag, München

    Google Scholar 

  • Emmeche C (1997) Autopoietic systems, replicators, and the search for a meaningful biological definition of life. Ultim Real Mean 20:244–264

    Google Scholar 

  • Farnsworth KD, Nelson J, Gershenson C (2013) Living is information processing: from molecules to global systems. Acta Biotheor 61:203–222. doi:10.1007/s10441-013-9179-3

    Article  Google Scholar 

  • Forgacs G, Newman SA (2005) Biological physics of the developing embryo. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fuchs T (2009) Das Gehirn—ein Beziehungsorgan. Eine phänomenologisch-ökologische Konzeption. Kohlhammer, Stuttgart

    Google Scholar 

  • Fuente L, Helms JA (2005) Head, shoulders, knees, and toes. Dev Biol 282:294–306. doi:10.1016/j.ydbio.2005.03.036

    Article  Google Scholar 

  • Gayon J (2010) Defining life: synthesis and conclusions. Orig Life Evol Biosph 40(2):231–244

    Article  Google Scholar 

  • Gerhart J, Kirschner M (1997) Cells, embryos, and evolution. Toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell, Malden

    Google Scholar 

  • Gilbert SF (2014) Developmental biology, 10th edn. Sinauer, Sunderland

    Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dynam 219:1–9

    Article  Google Scholar 

  • Grunwald A, Gutmann M, Neumann-Held E (eds) (2002) On human nature. Anthropological, biological, and philosophical foundations. Springer, Berlin

    Google Scholar 

  • Haken H (1983) Synergetics. An introduction. Springer, Berlin

    Book  Google Scholar 

  • Hengeveld R (2011) Definitions of life are not only unnecessary, but they can do harm to understanding. Found Sci 16(4):323–325

    Article  Google Scholar 

  • Henning BG, Scarfe AC (2013) Beyond mechanism. Putting life back into biology. Lexington Books, Lanham

    Google Scholar 

  • Hildebrandt G (1979) Rhythmical functional order and man’s emancipation from the time factor. In: Schaefer KE, Hildebrandt G, Macbeth N (eds) Basis of an individual physiology. Futura Publishing Comp, Mount Kisco, pp 15–43

    Google Scholar 

  • Hildebrandt G, Moog R, Raschke F (eds) (1987) Chronobiology and chronomedicine. Verlag Peter Lang, Frankfurt

    Google Scholar 

  • Hoffmeyer J (2009) Biosemiotics: an examination into the signs of life and the life of signs. University of Scranton Press, Scranton

    Google Scholar 

  • Hoffmeyer J (2013) Why do we need a semiotic understanding of life? In: Henning BG, Scarfe AC (eds) (2013): beyond mechanism. Putting life back into biology. Lexington Books, Lanham, pp 147–168

    Google Scholar 

  • Hofmeyr JH (2007) The biochemical factory that autonomously fabricates itself: a systems biological view of the living cell. In: Boogerd F, Bruggeman FJ, Hofmeyr JHS, Westerhoff HV (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 217–242

    Chapter  Google Scholar 

  • Hug H (2000) Apoptose: Die Selbstvernichtung der Zelle als Überlebensschutz. Biol Unserer Zeit 30(3):128–135

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions. Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176

    Article  Google Scholar 

  • Joyner M, Pedersen BK (2011) Ten questions about systems biology. J Physiol 589(5):1017–1030

    Article  Google Scholar 

  • Kaneko K (2006) Life: an introduction to complex systems biology. Springer, Berlin

    Google Scholar 

  • Kather R (2003) Was ist Leben? Philosophische Positionen und Perspektiven. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Keller EF (2011) Towards a science of informed matter. Hist Philos Stud Hist Philos Biol Biomed Sci 42(2):174–179

    Article  Google Scholar 

  • Kicheva A, Cohen M, Briscoe J (2012) Developmental pattern formation: insights from physics and biology. Science 338:210–212. doi:10.1126/science.1225182

    Article  Google Scholar 

  • Kirschner MW, Gerhart JC (2005) The plausibility of life. Resolving Darwin’s dilemma. Yale University Press, New Haven

    Google Scholar 

  • Kirschner M, Gerhart J, Mitchison T (2000) Molecular “vitalism”. Cell 100:79–88

    Article  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137. doi:10.1038/msb4100179

    Article  Google Scholar 

  • Kolb VM (2007) On the applicability of the Aristotelian principles to the definition of life. Int J Astrobiol 6(1):51–57

    Article  Google Scholar 

  • Koukkari WL, Sothern RB (2006) Introducing biological rhythms. Springer, New York

    Google Scholar 

  • Krimsky S, Gruber J (eds) (2013) Genetic explanations. Sense and nonsense. Harvard University Press, Cambridge

    Google Scholar 

  • Laland KN, Sterelny K (2006) Seven reasons (not) to neglect niche construction. Evolation 60:1751–1762

    Article  Google Scholar 

  • Lewontin RC (1991) Biology as ideology. Harper, New York

    Google Scholar 

  • Lewontin R (2000) The triple helix. Gene, organism and environment. Harvard University Press, Cambridge

    Google Scholar 

  • Lewontin R, Rose S, Kamin LJ (1984) Biology, ideology, and human nature. Not in our genes. Pantheon Books, New York

    Google Scholar 

  • Longo G, Miquel PA, Sonnenschein C, Soto AM (2012) Is information a proper observable for biological organization? Prog Biophys Mol Biol 109:108–114

    Article  Google Scholar 

  • Looijen RC (2000) Holism and reductionism in biology and ecology. The mutual dependence of higher and lower level research programmes. Episteme, vol 23. Kluwer, Dordrecht

    Book  Google Scholar 

  • Luisi PL (2003) Autopoiesis: a review and a reappraisal. Naturwissenschaften 90:49–59

    Google Scholar 

  • Mahner M, Bunge M (1997) Foundations of biophilosophy. Springer, Heidelberg

    Book  Google Scholar 

  • Maturana HR, Varela FJ (1987) The tree of knowledge: the biological roots of human understanding. Shambhala Press, Boston

    Google Scholar 

  • Mayr E (1988) Toward a new philosophy of biology. Observations of an evolutionist. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1996) The autonomy of biology: the position of biology among the sciences. Q Rev Biol 71(1):97–106

    Article  Google Scholar 

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  Google Scholar 

  • Moreno A, Mossio M (2015) Biological autonomy. A philosophical and theoretical enquiry. Springer, Dordrecht

    Google Scholar 

  • Moreno A, Etxeberria A, Umerez J (2008) The autonomy of biological individuals and artificial models. BioSystems 91:309–319

    Article  Google Scholar 

  • Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437

    Article  Google Scholar 

  • Moss L (2003) What genes can’t do. MIT Press, Cambridge

    Google Scholar 

  • Müller GB, Newman SA (2003) Origination of organismal form—beyond the gene in development and evolutionary biology. MIT Press, Cambridge

    Google Scholar 

  • Nagel T (2012) Mind and cosmos. Why the materialist neo-Darwinian conception of nature is almost certainly false. Oxford University Press, Oxford

    Book  Google Scholar 

  • Newman SA (2012) Physico-genetic determinants in the evolution of development. Science 338:217–219. doi:10.1126/science.1222003

    Article  Google Scholar 

  • Noble D (2006) The music of life. Biology beyond genes. Oxford University Press, Oxford

    Google Scholar 

  • Noble D (2008a) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93:16–26

    Article  Google Scholar 

  • Noble D (2008b) Genes and causation. Philos Trans R Soc A 366(1878):3001–3015

    Article  Google Scholar 

  • Noble D (2011) Systems: what’s in a name? Physiology 26:126–128

    Article  Google Scholar 

  • Normandin S, Wolfe CT (eds) (2013) Vitalism and the scientific image in post-enlightenment life science, 1800–2010. Springer, Dordrecht

    Google Scholar 

  • Nurse P (2008) Life, logic and information. Nature 454:424–426

    Article  Google Scholar 

  • Odling-Smee FJ (2010) Niche inheritance. In: Pigliucci M, Müller GB (eds) Evolution. The extended synthesis. MIT Press, Cambridge, pp 175–207

    Chapter  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Oliver JD, Perry RS (2006) Definitely life but not definitively. Orig Life Evol Biosph 36(5–6):515–521. doi:10.1007/s11084-006-9035-4

    Google Scholar 

  • O’Malley MA, Dupré J (2005) Fundamental issues in systems biology. BioEssays 27:1270–1276

    Article  Google Scholar 

  • op Akkerhuis GAJMJ (2010) Towards a hierarchical definition of life, the organism, and death. Found Sci 15(3):245–262

    Article  Google Scholar 

  • Oyama S (2000) The ontogeny of information: developmental systems and evolution. Duke University Press, Durham

    Book  Google Scholar 

  • Oyama S, Griffiths PE, Gray RD (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge

    Google Scholar 

  • Parrington J (2015) The deeper genome: why there is more to the human genome than meets the eye. Oxford University Press, Oxford

    Google Scholar 

  • Penzlin H (2014) Das Phänomen Leben. Grundfragen der Theoretischen Biologie. Springer Spektrum, Berlin

    Book  Google Scholar 

  • Piccolo S (2013) Mechanics in the embryo. Nature 504:223–225

    Article  Google Scholar 

  • Pigliucci M, Müller G (2010) Evolution—the extended synthesis. MIT Press, Cambridge

    Book  Google Scholar 

  • Popa R (2010) Necessity, futility and the possibility of defining life are all embedded in its origin as a punctuated-gradualism. Orig Life Evol Biosph 40(2):183–190. doi:10.1007/s11084-010-9198-x

    Article  Google Scholar 

  • Purnell BA (2012) Forceful thinking. Science 338:209

    Article  Google Scholar 

  • Radlanski RJ, Renz H (2006) Genes, forces, and forms: mechanical aspects of prenatal craniofacial development. Dev Dynam 235:1219–1229. doi:10.1002/dvdy.20704

    Article  Google Scholar 

  • Rehmann-Sutter C (2000) Biological organicism and the ethics of the human-nature relationship. Theor Biosci 119:334–354

    Article  Google Scholar 

  • Rehmann-Sutter C (2002) Genetics, embodiment and identity. In: Grunwald A, Gutmann M, Neumann-Held EM (eds) On human nature. Anthropological, biological, and philosophical foundations. Springer, Berlin, pp 23–50

    Google Scholar 

  • Rose S (1997) Lifelines: biology, freedom, determinism. Allen Lane, Hamondsworth

    Google Scholar 

  • Rose H, Rose S (2013) Genes, cells and brains. The promethean promises of the new biology. Verso, London

    Google Scholar 

  • Rosen R (1991) Life itself. A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press, New York

    Google Scholar 

  • Rosslenbroich B (2006) The notion of progress in evolutionary biology—the unresolved problem and an empirical suggestion. Biol Philos 21:41–70

    Article  Google Scholar 

  • Rosslenbroich B (2011a) Outline of a concept for organismic systems biology. Semin Cancer Biol 21(3):156–164. doi:10.1016/j.semcancer.2011.06001

    Article  Google Scholar 

  • Rosslenbroich B (2011b) Patterns and processes in macroevolution. Ann Hist Philos Biol 16:171–184 (Universitätsverlag Göttingen 2013)

    Google Scholar 

  • Rosslenbroich B (2014) On the origin of autonomy. A new look at the major transitions in evolution. Springer Cham, Heidelberg

    Google Scholar 

  • Rosslenbroich B (2016) The significance of an enhanced concept of the organism for medicine. Evidence-Based Complementary and Alternative Medicine (Hindawi). 2016. doi:10.1155/2016/1587652

  • Ruiz-Mirazo K, Moreno A (2012) Autonomy in evolution: from minimal to complex life. Synthese 185:21–52. doi:10.1007/s11229-011-9874-z

    Article  Google Scholar 

  • Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig Life Evol Biosph 34:323–346

    Article  Google Scholar 

  • Saetzler K, Sonnenschein C, Soto AM (2011) Systems biology beyond networks: generating order from disorder through self-organization. Semin Cancer Biol 21:165–174

    Article  Google Scholar 

  • Schad W (1982) Biologisches Denken. In: Schad W (ed) Goetheanistische Naturwissenschaft, vol 1. Allgemeine Biologie, Stuttgart, pp 9–25

    Google Scholar 

  • Shani I (2013) Setting the bar for cognitive agency: or how minimally autonomous can an autonomous agent be? New Ideas Psychol 31(2):151–165

    Article  Google Scholar 

  • Shapiro JA (2011) Evolution: a view from the 21st century. FT Press Science, Upper Saddle River

    Google Scholar 

  • Sonnenschein C, Soto AM (1999) The society of cells: cancer and control of cell proliferation. Taylor & Francis, New York

    Google Scholar 

  • Soto AM, Sonnenschein C (2005) Emergentism as a default: cancer as a problem of tissue organization. J Biosci 30:103–118

    Article  Google Scholar 

  • Soto AM, Sonnenschein C (2012) Is systems biology a promising approach to resolve controversies in cancer research? Cancer Cell Int 12:12. doi:10.1186/1475-2867-12-12

    Article  Google Scholar 

  • Sterelny K, Griffiths PE (1999) Sex and death. An introduction to philosophy of biology. University of Chicago Press, Chicago

    Google Scholar 

  • Stewart I (2002) Does god play dice?, 2nd edn. Blackwell, Malden

    Google Scholar 

  • Strohman R (1993) Ancient genomes, wise bodies, unhealthy people: limits of a genetic paradigm in biology and medicine. Perspect Biol Med 37:112–145

    Article  Google Scholar 

  • Strohman R (1997) The coming Kuhnian revolution in biology. Nat Biotechnol 15:194–200

    Article  Google Scholar 

  • Strohman R (2002) Maneuvering in the complex path from genotype to phenotype. Science 296:701–703

    Article  Google Scholar 

  • Strohman R (2003) Genetic determinism as a failing paradigm in biology and medicine: implications for health and wellnes. J Soc Work Educ 39(2):169–191

    Google Scholar 

  • Thompson E (2007) Mind in life. Biology, phenomenology, and the sciences of mind. Harvard University Press, Cambridge

    Google Scholar 

  • Tsokolov SA (2009) Why is the definition of life so elusive? epistemological considerations. Astrobiology 9(4):401–412

    Article  Google Scholar 

  • Turner JS (2007) The tinkerer’s accomplice. How design emerges from life itself. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Turner JS (2013) Homeostasis and the forgotten vitalist roots of adaptation. In: Normandin S, Wolfe CT (eds) Vitalism and the scientific image in post-enlightenment life science, 1800–2010. Springer, Dordrecht, pp 271–291

    Chapter  Google Scholar 

  • van der Steen WJ (1997) Limitations of general concepts: a comment on Emmeche’s definition of “life”. Ultim Real Mean 20:317–320

    Google Scholar 

  • Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. BioSystems 5:187–195

    Article  Google Scholar 

  • Walker SI (2014) Top-down causation and the rise of information in the emergence of life. Information 5:424–439. doi:10.3390/info5030424

    Article  Google Scholar 

  • Weingarten M (1993) Organismen—Objekte oder Subjekte der Evolution? Philosophische Studien zum Paradigmawechsel in der Evolutionsbiologie. Wissenschaftliche Buchgesellschaft Darmstadt

  • Weiss PA (1963) The cell as unit. J Theor Biol 5:389–397

    Article  Google Scholar 

  • Weiss PA (1968) From cell to molecule. In: Weiss PA (ed) Dynamics of development: experiments and inferences. Selected papers on developmental biology, pp 24–95

  • Weiss PA (1969) The living system: determinism stratified. In: Koestler A, Smythies JR (eds) Beyond reductionism. New perspectives in the life sciences. Hutchinson,  London, pp 3–55

    Google Scholar 

  • Weiss PA (1971) The basic concept of hierarchic systems. In: Weiss PA (ed) Hierarchically organized systems in theory and practice. Hafner Publishing Company, New York, pp 1–43

    Google Scholar 

  • Weiss PA (1973) The science of life: the living system—a system for living. Futura, New York

    Google Scholar 

  • Weiss PA (1977) The system of nature and the nature of systems: empirical holism and practical reductionism harmonized. In: Schaefer K, Hensel H, Brady R (eds) Toward a man-centered medical science. A new image of man in medicine, vol 1. Futura Publishing Company, Mt. Kisko, pp 17–63

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Willmer P (2003) Convergence and homoplasy in the evolution of organismal form. In: Müller GB, Newman A (eds) Origination of organismal form. Beyond the gene in development and evolutionary biology. MIT Press, Cambridge, pp 33–49

    Google Scholar 

  • Woese C (2004) A new biology for a new century. Microbiol Mol Biol R 68(2):173–186

    Article  Google Scholar 

  • Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Bio 10:34–43

    Article  Google Scholar 

  • Wuketits FM (1981) Biologie und Kausalität: Biologische Ansätze zur Kausalität, Determination und Freiheit. Parey Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Rosslenbroich.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosslenbroich, B. Properties of Life: Toward a Coherent Understanding of the Organism. Acta Biotheor 64, 277–307 (2016). https://doi.org/10.1007/s10441-016-9284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-016-9284-1

Keywords

Navigation