Skip to main content
Log in

Emergentism as a default: Cancer as a problem of tissue organization

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

During the last fifty years the dominant stance in experimental biology has been reductionism. For the most part, research programs were based on the notion that genes were in ’the driver’s seat’ controlling the developmental program and determining normalcy and disease (genetic reductionism and genetic determinism). Philosophers were the first to realize that the belief that the Mendelian genes were reduced to DNA molecules was questionable. Soon after these pronouncements, experimental data confirmed their misgivings. The optimism of molecular biologists, fueled by early success in tackling relatively simple problems, has now been tempered by the difficulties found when attempting to understand complex biological problems.

Here, we analyse experimental data that illustrate the shortcomings of this sort of reductionism. We also examine the prevailing paradigm in cancer research, the somatic mutation theory (SMT), the premises of which are: (i) cancer is derived from a single somatic cell that has accumulated multiple DNA mutations; (ii) the default state of cell proliferation in metazoa is quiescence; and (iii) cancer is a disease of cell proliferation caused by mutations in genes that control proliferation and the cell cycle. We challenge the notion that cancer is a cellular problem caused by mutated genes by assessing data gathered both from within the reductionist paradigm and from an alternative view that regards carcinogenesis as a developmental process gone awry. This alternative view, explored under the name of the tissue organization field theory (TOFT), is based on premises that place cancer in a different hierarchical level of complexity from that proposed by the SMT, namely: (i) carcinogenesis represents a problem of tissue organization comparable to organogenesis, and (ii) proliferation is the default state of all cells.

We propose that the organicist view, in which the TOFT is based, is a good starting point from which to explore emergent phenomena. However, new theoretical concepts are needed in order to grapple with the apparent circular causality of complex biological phenomena in development and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

EPO:

erythropoietin

hDdl:

human homologue ofDrosophila discs large

HNPCC:

hereditary non-polyposis colorectal cancer

Rb:

retinoblastoma

SMT:

somatic mutation theory of carcinogenesis

TGF-β:

transforming growth factor-beta

TOFT:

tissue organization field theory

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K and Watson J D 1994Molecular biology of the cell (New York: Garland Publishing Inc.) p. 891

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2001Molecular biology of the cell (New York: Garland Publishing Inc.) pp 1313–1362

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2002Molecular biology of the cell (New York: Garland Publishing Inc.) p. 1015

    Google Scholar 

  • Ayala F J 1968 Biology as an autonomous science;Am. Sci. 56 207–221

    CAS  PubMed  Google Scholar 

  • Baron U, Gossen M and Bujard H 1997 Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential;Nucleic Acids Res. 25 2723–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett D E Jr, Eisen M B and Boguski M S 1999 Gene expression informatics It’s all in your mine;Nature Genet. 21 51–55

    Article  CAS  PubMed  Google Scholar 

  • Benson K 2001 T H Morgan’s resistance to the chromosome theory;Nat. Rev. Genet. 2 469–474

    Article  CAS  PubMed  Google Scholar 

  • Bishop J M 1985 Viral oncogenes;Cell 42 23–38

    Article  CAS  PubMed  Google Scholar 

  • Bissell M J and Radisky D 2001 Putting tumours in context;Nat. Rev. Cancer 1 46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisken C, Socolovsky M, Lodish H F and Weinberg R 2002 The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium;Proc. Natl. Acad. Sci. USA 99 14241–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P O and Botstein D 1999 Exploring the new world of the genome with DNA microarrays;Nature Genet. 21 33–37

    Article  CAS  PubMed  Google Scholar 

  • Bunge M 2004Emergence and convergence (Toronto: University of Toronto Press) pp 40–52

    Book  Google Scholar 

  • Clark W H 1991 Tumour progression and the nature of cancer;Br. J. Cancer 64 631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper G M 1983 Transforming genes of neoplasms;Prog. Nucleic Acid Res. Mol. Biol. 29 273–277

    Article  CAS  PubMed  Google Scholar 

  • Curtis H J 1965 Formal discussion of: Somatic mutations and carcinogenesis;Cancer Res. 25 1305–1308

    CAS  PubMed  Google Scholar 

  • Dawkins R 1976The selfish gene (Oxford: Oxford University Press)

    Google Scholar 

  • De Robertis E A, Morita E M and Cho K W Y 1991 Gradient fields and homeobox genes;Development 112 669–678

    Article  PubMed  Google Scholar 

  • Dennett D C 1995aDarwin’s dangerous idea (New York: Simon and Schuster) p. 21

    Google Scholar 

  • Dennett D C 1995bDarwin’s dangerous idea (New York: Simon and Schuster)

    Google Scholar 

  • DiBerardino M A, Orr N H and McKinnell R G 1986 Feeding tadpoles cloned from Rana erythrocyte nuclei;Proc. Natl. Acad. Sci. USA 83 8231–8234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie S A and Newmann S A 1994 Morphogenetic differences between fore and hind limb precartilage mesenchyme: Relation to mechanisms of skeletal pattern formation;Dev. Biol. 162 195–208

    Article  CAS  PubMed  Google Scholar 

  • Farge E 2003 Mechanical induction of twist in theDrosophila foregut/stomodeal primordium;Curr. Biol. 13 1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Fox-Keller E 2000The century of the gene (Cambridge: Harvard University Press) pp 73–132

    Book  Google Scholar 

  • Gilbert S F and Sarkar S 2000 Embracing complexity: Organicism for the 21st century;Dev. Dynamics 219 1–9

    Article  CAS  Google Scholar 

  • Greenspan R J 2001 The flexible genome;Nat. Rev. Genet. 2 383–387

    Article  CAS  PubMed  Google Scholar 

  • Griffiths P E and Gray R D 2000 Darwinism and developmental systems; inCycles of contingency: Developmental systems and evolution (eds) S Oyama, P E Griffiths and R D Gray (Cambridge: MIT Press) pp 195–218

    Google Scholar 

  • Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V and Barbacid M 2003 Tumor induction by an endogenousK-ras oncogene is highly dependent on cellular context;Cancer Cell. 4 111–120

    Article  CAS  PubMed  Google Scholar 

  • Hahn W C and Weinberg R A 2002a Mechanisms of disease: Rules for making human tumor cells;New Engl. J. Med. 347 1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Hahn W C and Weinberg R A 2002b Modelling the molecular circuitry of cancer;Nat. Rev. Cancer 2 331–342

    Article  CAS  PubMed  Google Scholar 

  • Harris H 1995The cells of the body: A history of somatic cell genetics (New York: Cold Spring Harbor Laboratory Press) pp 211–247

    Google Scholar 

  • Harris H 2004 Tumor suppression: putting on the breaks;Nature (London) 427 201

    Article  CAS  Google Scholar 

  • Hough C D, Woods D F, Park S and Bryant P J 1997 Organizing a functional junctional complex requires specific domains of theDrosophila MAGUK Discs large;Genes Dev. 11 3242–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull D 1974The philosophy of biological science (Englewood Clifts NJ: Prentice Hall) pp 8–44

    Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander E S, Golub T R and Jaenisch R 2002 Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei;Proc. Natl. Acad. Sci. USA 99 12889–12894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iau P T, Macmillian R D and Blamey R W 2001 Germ line mutations associated with breast cancer susceptibility;Eur. J. Cancer 37 300–321

    Article  CAS  PubMed  Google Scholar 

  • Illmensee K and Mintz B 1976 Totipotency and normal differentiation of single teratocarcinoma cell cloned by injection into blastocysts;Proc. Natl. Acad. Sci. USA 73 549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T and Weinberg R A 2002 Taking the study of cancer cell survival to a new dimension;Cell 111 923–925

    Article  CAS  PubMed  Google Scholar 

  • Jacob F 1982The possible and the actual (Seattle: University of Washington Press)

    Google Scholar 

  • Jursnich V A, Fraser S E, Held L I Jr, Ryerse J and Bryant P J 1990 Defective gap-junctional communication associated with imaginal disc overgrowth and degneration caused by mutations of the dco gene inDrosophila;Dev. Biol. 140 413–429

    Article  CAS  PubMed  Google Scholar 

  • Kemler R 1993 From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion;Trends Genet. 9 317–321

    Article  CAS  PubMed  Google Scholar 

  • Kim J 1999 Making Sense of Emergence;Philos. Stud. 95 3–36

    Article  Google Scholar 

  • Kinzler K W and Vogelstein B 1996 Lessons from hereditary colorectal cancer;Cell 87 159–170

    Article  CAS  PubMed  Google Scholar 

  • Knudson A G Jr 1989 Hereditary cancers disclose a class of cancer genes;Cancer 63 1888–1891

    Article  PubMed  Google Scholar 

  • Knudson A G Jr 1993 Pediatric molecular oncology: Past as prologue to the future;Cancer 71 3320–3324

    Article  PubMed  Google Scholar 

  • Knudson A G Jr 1995 Mutation and cancer: a personal odyssey;Adv. Cancer Res. 67 1–23

    Article  CAS  PubMed  Google Scholar 

  • Land H, Parada L F and Weinberg R A 1983 Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes;Nature (London) 304 596–602

    Article  CAS  Google Scholar 

  • Levine A J 1997 p53, the cellular gatekeeper for growth and division;Cell 88 323–331

    Article  CAS  PubMed  Google Scholar 

  • Loeb L A 2001 A mutator phenotype in cancer;Cancer Res. 61 3230–3239

    CAS  PubMed  Google Scholar 

  • Maffini M V, Soto A M, Calabro J M, Ucci A A and Sonnenschein C 2004 The stroma as a crucial target in rat mammary gland carcinogenesis;J. Cell Sci. 117 1495–1502

    Article  CAS  PubMed  Google Scholar 

  • Martins-Green M, Boudreau N and Bissell M J 1994 Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous Sarcoma virus;Cancer Res. 54 4334–4341

    CAS  PubMed  Google Scholar 

  • Matsumine Aet al 1996 Binding of APC to the human homolog of theDrosophila discs large tumour suppressor protein;Science 272 1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Mayr E 1982The growth of biological thought: Diversity, evolution and inheritance (Cambridge: Belknap Press) pp 1–146

    Google Scholar 

  • McCullough K, Coleman W B, Ricketts S L, Wilson A W, Smita G J and Grisham J W 1998 Plasticity of the neoplastic phenotypein vivo is regulated by epigenetic factors;Proc. Natl. Acad. Sci. USA 95 15333–15338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinnell R Get al 1993 Genomic plasticity of the Lucke renal carcinoma: a review;Int. J. Dev. Biol. 37 213–219

    CAS  PubMed  Google Scholar 

  • Mechler B Met al 1991Drosophila as a model system for molecular analysis of tumorogenesis;Environ. Health Perspect. 93 63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morange M 2002 The gene: Between holism and generalism; inPromises and limits of reductionism in the biomedical sciences (eds) D L Hull and M H V Van Regenmortel (Weinheim: John Wiley) pp 179–190

    Chapter  Google Scholar 

  • Moss L 2003aWhat genes can’t do (Cambridge: MIT Press) p. 129

    Google Scholar 

  • Moss L 2003bWhat genes can’t do (Cambridge: MIT Press) p. 186

    Google Scholar 

  • Moss L 2003cWhat genes can’t do (Cambridge: MIT Press)

    Google Scholar 

  • Needham J 1931Chemical embryology (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  • Needham J 1936 New advances in chemistry and biology of organized growth;Proc. R. Soc. B. 29 1577–1626

    CAS  Google Scholar 

  • Newbold R F and Overell R W 1983 Fibroblast immortality is a prerequisite for transformation by EJ c-HA-ras oncogene;Nature (London) 304 648–651

    Article  CAS  Google Scholar 

  • Nyhan W L 2000 Dopamine function in Lesch-Nyhan disease;Environ. Health Perspect. (Suppl. 3) 108 409–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orr J W 1958 The mechanism of chemical carcinogenesis;Br. Med. Bull. 14 99–101

    Article  CAS  PubMed  Google Scholar 

  • Parsons Ret al 1995 Mismatch repair deficiency in phenotypically normal human cells;Science 268 738–740

    Article  CAS  PubMed  Google Scholar 

  • Pierce G B, Shikes R and Fink L M 1978Cancer: A problem of developmental biology (Englewoods Cliffs: Prentice-Hall)

    Google Scholar 

  • Poisson A, Zablewska B and Gaudray P 2003 Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1;Cancer Lett. 189 1–10

    Article  CAS  PubMed  Google Scholar 

  • Powell C Eet al 2003 Plasma membrane-resident albumin binding protein associated with the proliferation of MCF7 serum-sensitive cells;Steroids 68 487–496

    Article  CAS  PubMed  Google Scholar 

  • Prehn R T 1994 Cancers beget mutationsversus mutations beget cancers;Cancer Res. 54 5296–5300

    CAS  PubMed  Google Scholar 

  • Rangarajan A and Weinberg R A 2003 Comparative biology of mouse versus human cells: modelling human cancer in mice;Nat. Rev. Cancer 3 952–959

    Article  CAS  PubMed  Google Scholar 

  • Reitmair A H, Cai J C, Bjerknes M, Redston M, Cheng C, Pind M T, Hay K, Mitri S, Bapat B V, Mak T W and Gallinger S 1996 MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis;Cancer Res. 56 2922–2926

    CAS  PubMed  Google Scholar 

  • Rideout W M, Eggan K and Jaenisch R 2001 Nuclear cloning and epigenetic reprogramming of the genome;Science 293 1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Robanus-Maandag E, Dekker M, van der Valk M, Carrozza M L, Jeanny J C, Dannenberg J H, Berns A and te Riele H 1998 p107 is a suppressor of retinoblastoma development in pRb-deficient mice;Genes Dev. 12 1599–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg A 1994Instrumental biology, or, The disunity of science (Chicago: University of Chicago Press)

    Google Scholar 

  • Rowlatt C 1994 Some consequences of defining the neoplasm as focal self-perpetuating tissue disorganization; inNew frontiers in cancer causation (ed.) O H Iversen (Washington DC: Taylor and Francis) pp 45–58

    Google Scholar 

  • Rubin H 1985 Cancer as a dynamic developmental disorder;Cancer Res. 45 2935–2942

    CAS  PubMed  Google Scholar 

  • Rubinfeld Bet al 1993 Association of the APC gene product with beta-catenin;Science 262 1731–1734

    Article  CAS  PubMed  Google Scholar 

  • Schaub J 1991Inborn errors of metabolism (Philadelphia: Lippincott, Williams and Wilkins)

    Google Scholar 

  • Smith K J, Johnson K A, Bryan T M, Hill D E, Markowitz S, Willson J K V, Paraskeva C, Peterson G M, Hamilton S R, Vogelstein B and Kinzler K W 1993 The APC gene product in normal and tumor cells;Proc. Natl. Acad. Sci. USA 90 2846–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Socolovsky M, Fallon A E J and Lodish H F 1998 The prolactin receptor rescues EpoR-/- erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit;Blood 92 1491–1496

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein C and Soto A M 1991 Cell proliferation in metazoans: negative control mechanisms;Cancer Treat. Res. 53 171–194

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein C and Soto A M 1999a Cell proliferation: the background and the premises; inThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag) pp 1–13

    Google Scholar 

  • Sonnenschein C and Soto A M 1999b TEpilogue Moving toward the integration of cell proliferation, carcinogenesis and neoplasia into biology; inThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag) pp 134–143

    Google Scholar 

  • Sonnenschein C and Soto A M 1999c The enormous complexity of cancer; inThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag) pp 99–111

    Google Scholar 

  • Sonnenschein C and Soto A M 1999dThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag) pp 41–59

    Google Scholar 

  • Sonnenschein C and Soto A M 1999eThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag) pp 91–143

    Google Scholar 

  • Sonnenschein C and Soto A M 1999fThe society of cells: Cancer and control of cell proliferation (New York: Springer Verlag)

    Google Scholar 

  • Sonnenschein C and Soto A M 2000 The somatic mutation theory of carcinogenesis: Why it should be dropped and replaced;Mol. Carcinog. 29 1–7

    Article  Google Scholar 

  • Sonnenschein C, Soto A M and Michaelson C L 1996 Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells;J. Steroid Biochem. Mol. Biol. 59 147–154

    Article  CAS  PubMed  Google Scholar 

  • Soto A M and Sonnenschein C 1985 The role of estrogens on the proliferation of human breast tumor cells (MCF-7);J. Steroid Biochem. 23 87–94

    Article  CAS  PubMed  Google Scholar 

  • Soto A M and Sonnenschein C 1987 Cell proliferation of estrogen-sensitive cells: the case for negative control;Endocrinol. Rev. 8 44–52

    Article  CAS  Google Scholar 

  • Soto A M and Sonnenschein C 1991 Regulation of cell proliferation: the negative control perspective;Ann. NY Acad. Sci. 628 412–418

    Article  CAS  PubMed  Google Scholar 

  • Soto A M and Sonnenschein C 1993 Regulation of cell proliferation: is the ultimate control positive or negative?; inNew frontiers in cancer causation (ed.) O H Iversen (Washington DC: Taylor and Francis) pp 109–123

    Google Scholar 

  • Steel D M and Harris H 1989 The effect of antisense RNA to fibronectin on the malignancy of hybrids between melanoma cells and normal fibroblasts;J. Cell Sci. 93 515–524

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht M D, Lochter A, Sympson C J, Huey B, Rougier J-P, Gray J W, Pinkel D, Bissell M J and Werb Z 1999 The stromal proteinase MMP3/Stromelysin-1 promotes mammary carcinogenesis;Cell 98 137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart T A and Mintz B 1981 Successful generations of mice produced from an established culture line of euploid teratocarcinoma cells;Proc. Natl. Acad. Sci. USA 78 6314–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L K, Burrell M, Hill D E, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B and Kinzler K W 1995 APC binds to the novel protein EB1;Cancer Res. 55 2972–2977

    CAS  PubMed  Google Scholar 

  • van Obberghen-Schilling E, Roche N S, Flanders K C, Sporn M B and Roberts A B 1988 Transforming growth factor beta1 positively regulates its own expression in normal and transformed cells;J. Biol. Chem. 263 7741–7746

    Article  PubMed  Google Scholar 

  • Waddington C H 1935 Cancer and the theory of organizers;Nature (London) 135 606–608

    Article  Google Scholar 

  • Waddington C H 1942 Canalization of development and its inheritance of acquired characters;Nature (London) 150 563–565

    Article  Google Scholar 

  • Wang T-L, Rogo C, Silliman N, Ptak J, Markowitz S, Willson J K V, Parmigiani G, Kinzler K W, Vogelstein B and Velculescu V E 2002 Prevalence of somatic alterations in the colorectal cancer cell genome;Proc. Natl. Acad. Sci. USA 99 3076–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver V M, Lelievre S, Lakins J N, Chrenek M A, Jones J C, Gianeotti F, Werb Z and Bissell M J 2002 β4 integrindependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium;Cancer Cell. 2 205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver V M, Petersen O W, Wang F, Larabell C A, Briand P, Damsky C and Bissell M J 1997 Reversion of the malignant phenotype of human breast cells in three-dimensional culture andin vivo integrin blocking antibody;J. Cell Biol. 137 231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg R A 1998One renegade cell: how cancer begins (New York: Basic Books)

    Google Scholar 

  • Weinstein I B 2002 Cancer. Addiction to oncogenes the Achilles heal of cancer;Science 297 63–64

    Article  CAS  PubMed  Google Scholar 

  • Willis R A 1967Pathology of tumors (London: Butterworths)

    Google Scholar 

  • Wolpert L 2002 Unpersuasive thoughts and unhelpful ideals;Science 295 633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, A.M., Sonnenschein, C. Emergentism as a default: Cancer as a problem of tissue organization. J Biosci 30, 103–118 (2005). https://doi.org/10.1007/BF02705155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705155

Keywords

Navigation