Skip to main content
Log in

Local Description of Band Rearrangements

Comparison of Semi-quantum and Full Quantum Approach

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Rearrangement of rotation-vibration energy bands in isolated molecules within semi-quantum approach is characterized by delta-Chern invariants, each of which is associated to a locally approximated semi-quantum Hamiltonian valid in a small neighborhood of a degeneracy point for the initial semi-quantum Hamiltonian and also valid in a small neighborhood of a critical point corresponding to the crossing of the boundary between iso-Chern domains in the control parameter space. For a full quantum model, a locally approximated Hamiltonian is assumed to take the form of a Dirac operator together with a specific boundary condition. It is demonstrated that the crossing of the boundary along a path with a delta-Chern invariant equal to ±1 corresponds to the transfer of one quantum level from a subspaces of quantum states to the other subspace associated with respective positive and negative energy eigenvalues of the local Dirac Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, V.I.: Remarks on eigenvalues and eigenvectors of Hermitian matrices. Berry phase, adiabatic connections and quantum Hall effect. Sel. Math. New Ser. 1, 1–19 (1995)

    Article  MATH  Google Scholar 

  2. Asorey, M., Balachandran, A.P., Pérez-Pardo, J.M.: Edge states: Topological insulators, superconductors and QCD chiral bags. J. High Energy Phys. 12, 073 (2013)

    Article  Google Scholar 

  3. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I, II, III. Math. Proc. Camb. Philos. Soc. 77(78), 43–69 (1975), 78, 405–432 (1975), 79, 71–99 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berry, M.V.: Quantal phase factor accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  MATH  Google Scholar 

  5. Faure, F., Zhilinskii, B.I.: Topological Chern indices in molecular spectra. Phys. Rev. Lett. 85, 960–963 (2000)

    Article  Google Scholar 

  6. Faure, F., Zhilinskii, B.I.: Topologically coupled energy bands in molecules. Phys. Lett. A 302, 242–252 (2002)

    Article  MATH  Google Scholar 

  7. Haldane, F.D.M.: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988)

    Article  MathSciNet  Google Scholar 

  8. Hasan, M.Z., Kane, C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  9. Iwai, T., Zhilinskii, B.: Energy bands: Chern numbers and symmetry. Ann. Phys. 326, 3013–3066 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Iwai, T., Zhilinskii, B.: Rearrangement of energy bands: Chern numbers in the presence of cubic symmetry. Acta Appl. Math. 120, 153–175 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Iwai, T., Zhilinskii, B.: Qualitative features of the rearrangement of molecular energy spectra from a “wall-crossing” perspective. Phys. Lett. A 377, 2481–2486 (2013)

    Article  MathSciNet  Google Scholar 

  12. Iwai, T., Zhilinskii, B.: Topological phase transitions in the vibration-rotation dynamics of an isolated molecule. Theor. Chem. Acc. 133, 1501 (2014)

    Article  Google Scholar 

  13. Nȧsell, I.: Inequalities for modified Bessel functions. Math. Comput. 28, 253–256 (1974)

    Article  MathSciNet  Google Scholar 

  14. Pavlov-Verevkin, V.B., Sadovskii, D.A., Zhilinskii, B.I.: On the dynamical meaning of diabolic points. Europhys. Lett. 6, 573–578 (1988)

    Article  Google Scholar 

  15. Prokhorova, M.: The spectral flow for Dirac operators on compact planar domains with local boundary conditions. Commun. Math. Phys. 322, 385–414 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sadovskii, D.A., Zhilinskii, B.I.: Group theoretical and topological analysis of localized vibration-rotation states. Phys. Rev. A 47, 2653–2671 (1993)

    Article  Google Scholar 

  17. Sadovskii, D.A., Zhilinskii, B.I.: Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A 256, 235–244 (1999)

    Article  MathSciNet  Google Scholar 

  18. Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics. World Scientific, Singapore (1989)

    MATH  Google Scholar 

  19. von Neumann, J., Wigner, E.: On the behaviour of eigenvalues in adiabatic processes. Z. Phys. 30, 467–470 (1929)

    MATH  Google Scholar 

  20. Zhilinskii, B.: Symmetry, invariants and topology in molecular models. Phys. Rep. 341, 85–172 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. G. Dhont for drawing graphs of eigenvalues as functions of the control parameter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Zhilinskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, T., Zhilinskii, B. Local Description of Band Rearrangements. Acta Appl Math 137, 97–121 (2015). https://doi.org/10.1007/s10440-014-9992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9992-y

Keywords

Mathematics Subject Classification

Navigation