Skip to main content

Advertisement

Log in

Topological phase transitions in the vibration–rotation dynamics of an isolated molecule

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

One of the characteristic features of rotation–vibration dynamics is the existence of a variety of energy bands which result from organization of energy levels into bands depending on control parameters. Symmetry and topology aspects of the organization of energy bands and generic modifications of this structure for molecular systems with symmetry are discussed in a way parallel to the description of topological quantum transitions extensively studied in condensed matter physics. A special class of axially symmetric molecular systems is analyzed. It is shown that only a finite number of different band structures are possible for rotation–vibration problem with a finite number of vibrational states in the case of continuous axial symmetry, whereas for problems with finite group symmetry an arbitrary large number of different band structures are formally allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The number of one-dimensional representations of a group is equal to the order of Abelianization, i.e., the order of the Abelian group \(G/[G,G],\) the quotient of \(G\) by the commutator \([G,G].\)

References

  1. Arnold VI (1995) Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect. Selecta Mathematica 1:1–19

    Article  Google Scholar 

  2. Berry MV (1984) Quantal phase factor accompanying adiabatic changes. Proc R Soc Lond A 392:45–57

    Article  Google Scholar 

  3. Brodersen S, Zhilinskii B (1995) Transfer of clusters between the vibrational components of CF4. J Mol Spectrosc 169:1–17

    Article  CAS  Google Scholar 

  4. Broer HW, Cushman RH, Fassò F, Takens F (2007) Geometry of KAM-tori for nearly integrable Hamiltonian systems. Ergod Theory Dyn Syst 27:725–741

    Article  Google Scholar 

  5. Caspers WJ (2008) Degeneracy of the eigenvalues of hermitian matrices. J Phys Conf Ser 104:012032

    Article  Google Scholar 

  6. Chen X, Gu Z-C, Liu Z-X, Wen X-G (2012) Symmetry protected topological orders and the group cohomology of their symmetry group. Science 338:1604–1606

    Article  CAS  Google Scholar 

  7. Cushman RH, Duistermaat JJ (1988) The quantum mechanical spherical pendulum. Bull Am Math Soc 19:475–479

    Article  Google Scholar 

  8. Efstathiou K, Sadovskii D (2010) Normalization and global analysis of perturbations of the hydrogen atom. Rev Mod Phys 82:2099–2154

    Article  CAS  Google Scholar 

  9. Faure F, Zhilinskii B (2000) Topological Chern indices in molecular spectra. Phys Rev Lett 85:960–963

    Article  CAS  Google Scholar 

  10. Faure F, Zhilinskii B (2002) Topologically coupled energy bands in molecules. Phys Lett A 302:242–252

    Article  CAS  Google Scholar 

  11. Shapere A, Wilczek F (eds) (1989) Geometric phases in physics. World Scientific, Singapore

  12. Faddeev LD, Popov VN (1967) Feynman diagrams for the Yang–Mills field. Phys Lett B 25:29–30

    Article  Google Scholar 

  13. Harter W (1993) Principles of symmetry, dynamics, and spectroscopy. Wiley Interscience, New York

    Google Scholar 

  14. Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82:3045–3067

    Article  CAS  Google Scholar 

  15. Iwai T, Zhilinskii B (2011) Energy bands: Chern numbers and symmetry. Ann Phys (NY) 326:3013–3066

    Article  CAS  Google Scholar 

  16. Iwai T, Zhilinskii B (2012) Rearrangement of energy bands: Chern numbers in the presence of cubic symmetry. Acta Appl Math 120:153–175

    Article  Google Scholar 

  17. Iwai T, Zhilinskii B (2013) Qualitative features of the rearrangement of molecular energy spectra from a “wall-crossing” perspective. Phys Lett A 377:2481–2486

    Article  CAS  Google Scholar 

  18. Iwai T, Zhilinskii B (2014) Chern number modification in crossing the boundary between different band structures. Three band model with cubic symmetry. Submitted for publication

  19. Kane CL, Mele EJ (2005) Z 2 topological order and the quantum spin Hall effect. Phys Rev Lett 95:146802

    Article  CAS  Google Scholar 

  20. Kitaev A (2009) Periodic table for topological insulators and superconductors. AIP Conf Proc 1134:22–30

    Article  CAS  Google Scholar 

  21. Kohmoto M (1985) Topological invariant and the quantization of the Hall conductance. Ann Phys (NY) 160:343–354

    Article  Google Scholar 

  22. Kontsevich M, Soibelman Y (2013) Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry. arXiv:1303.3253 to appear in Lecture Notes in Mathematics

  23. Michel L, Zhilinskii B (2001) Symmetry, invariants topology. Basic tools. Phys Rep 341:11–84

    Article  CAS  Google Scholar 

  24. Moore JE, Balents L (2007) Topological invariants of time-reversal-invariant band structures. Phys Rev B 75:121306(R)

    Article  Google Scholar 

  25. Pavlichenkov I, Zhilinskii B (1988) Critical phenomena in rotational spectra. Ann Phys (NY) 184:1–32

    Article  CAS  Google Scholar 

  26. Pavlov-Verevkin VB, Sadovskii DA, Zhilinskii BI (1988) On the dynamical meaning of diabolic points. Europhys Lett 6:573–78

    Article  Google Scholar 

  27. Sadovskii D, Zhilinskii B (1999) Monodromy, diabolic points, and angular momentum coupling. Phys Lett A 256:235–44

    Article  CAS  Google Scholar 

  28. Sadovskii D, Zhilinskii B (2006) Quantum monodromy, its generalizations and molecular manifestations. Mol Phys 104:2595–2615

    Article  CAS  Google Scholar 

  29. Shrivastava KN (2004) Negative-spin quasiparticles in quantum Hall effect. Phys Lett A 326:469–472

    Article  CAS  Google Scholar 

  30. van Tonder A (2002) Ghost as negative spinors. Nucl Phys B 645:371–386

    Article  Google Scholar 

  31. Vu Ngoc S (1999) Quantum monodromy in integrable systems. Commun Math Phys 203:465–479

    Article  Google Scholar 

  32. Zhilinskii B (2001) Symmetry, invariants and topology in molecular models. Phys Rep 341:85–172

    Article  CAS  Google Scholar 

  33. Zhilinskii B (2011) Quantum bifurcations. In: Meyers R (ed) Mathematics of complexity and dynamical systems. Springer, New York, pp 1438–1456

    Google Scholar 

  34. Zhilinskii B, Brodersen S (1994) The symmetry of the vibrational components in T d molecules. J Mol Spectrosc 163:326–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zhilinskii.

Additional information

Dedicated to Professor Greg Ezra and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwai, T., Zhilinskii, B. Topological phase transitions in the vibration–rotation dynamics of an isolated molecule. Theor Chem Acc 133, 1501 (2014). https://doi.org/10.1007/s00214-014-1501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1501-x

Keywords

Navigation