Skip to main content
Log in

Fluorinated Methacrylamide Chitosan Hydrogels Enhance Cellular Wound Healing Processes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low availability of oxygen can lead to stalled wound healing processes and chronic wounds. To address local hypoxia and to better understand direct cellular benefits, a perfluorocarbon conjugated chitosan (MACF) hydrogel that delivers oxygen was created and applied for the first time to in vitro cultures of human dermal fibroblasts and human epidermal keratinocytes under both normoxic (21% O2) and hypoxic (1% O2) environments. Results revealed that local application of MACF provided 233.8 ± 9.9 mmHg oxygen partial pressure at 2 h and maintained equilibrium oxygen levels that were approximately 17 mmHg partial pressure greater than untreated controls. Cell culture experiments showed that MACF oxygenating gels improved cellular functions involved in wound healing such as cell metabolism, total DNA synthesis and cell migration under hypoxia in both fibroblasts and keratinocytes. Adenosine triphosphate (ATP) quantification also revealed that MACF treatments improved cellular ATP levels significantly over controls under both normoxia and hypoxia (p < 0.005). In total, these studies provide new data to indicate that supplying local oxygen via MACF hydrogels under hypoxic environments improves key wound healing cellular functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s modified eagle medium

dsDNA:

Double-stranded DNA

DTT:

Dithiothreitol

ECM:

Extracellular matrix

MAC:

Methacrylamide chitosan

MACF:

Fluorinated methacrylamide chitosan

nHDF:

Neonatal human dermal fibroblast

nHEK:

Neonatal human epidermal keratinocytes

NMR:

Nuclear magnetic resonance

PO2 :

Oxygen partial pressure

PBS:

Phosphate buffered saline

PFCs:

Perfluorocarbons

ROS:

Reactive oxygen species

References

  1. Ahn, S. T., and T. A. Mustoe. Effects of ischemia on ulcer wound healing: a new model in the rabbit ear. Ann Plast Surg 24:17–23, 1990.

    Article  CAS  PubMed  Google Scholar 

  2. Baracca, A., G. Sgarbi, A. Padula, and G. Solaini. Glucose plays a main role in human fibroblasts adaptation to hypoxia. Int J Biochem Cell Biol 45:1356–1365, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Castro, C. I., and J. C. Briceno. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs 34:622–634, 2010.

    PubMed  Google Scholar 

  4. Chang, N., W. H. Goodson, 3rd, F. Gottrup, and T. K. Hunt. Direct measurement of wound and tissue oxygen tension in postoperative patients. Ann Surg 197:470–478, 1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cook, C. A., K. C. Hahn, J. B. Morrissette-McAlmon, and W. L. Grayson. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 52:376–384, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cory, G. Scratch-wound assay. Methods Mol Biol 769:25–30, 2011.

    Article  CAS  PubMed  Google Scholar 

  7. Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743, 2005.

    Article  PubMed  Google Scholar 

  8. Flaim, S. F. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 22:1043–1054, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Gholipourmalekabadi, M., S. Zhao, B. S. Harrison, M. Mozafari, and A. M. Seifalian. Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? Trends Biotechnol 34:1010–1021, 2016.

    Article  CAS  PubMed  Google Scholar 

  10. Hohn, D. C., R. D. MacKay, B. Halliday, and T. K. Hunt. Effect of O2 tension on microbicidal function of leukocytes in wounds and in vitro. Surg Forum 27:18–20, 1976.

    CAS  PubMed  Google Scholar 

  11. Kalani, M., K. Brismar, B. Fagrell, J. Ostergren, and G. Jorneskog. Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care 22:147–151, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Kean, T., and M. Thanou. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Khattak, S. F., K. S. Chin, S. R. Bhatia, and S. C. Roberts. Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng 96:156–166, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, J. W., I. Tchernyshyov, G. L. Semenza, and C. V. Dang. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185, 2006.

    Article  PubMed  Google Scholar 

  15. Krafft, M. P. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev 47:209–228, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence, P. G., P. S. Patil, N. D. Leipzig, and Y. Lapitsky. Ionically cross-linked polymer networks for the multiple-month release of small molecules. ACS Appl Mater Interfaces 8:4323–4335, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, H., A. Wijekoon, and N. D. Leipzig. Encapsulated neural stem cell neuronal differentiation in fluorinated methacrylamide chitosan hydrogels. Ann Biomed Eng 42:1456–1469, 2014.

    Article  PubMed  Google Scholar 

  18. Liang, C. C., A. Y. Park, and J. L. Guan. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Lowe, K. C., M. R. Davey, and J. B. Power. Perfluorochemicals: their applications and benefits to cell culture. Trends Biotechnol 16:272–277, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Mallepally, R. R., C. C. Parrish, M. A. Mc Hugh, and K. R. Ward. Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials. Int J Pharm 475:130–137, 2014.

    Article  CAS  PubMed  Google Scholar 

  21. Martin, P. Wound healing–aiming for perfect skin regeneration. Science 276:75–81, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. Mustoe, T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187:65S–70S, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Niinikoski, J. H. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World J Surg 28:307–311, 2004.

    Article  PubMed  Google Scholar 

  24. Oberringer, M., C. Meins, M. Bubel, and T. Pohlemann. In vitro wounding: effects of hypoxia and transforming growth factor beta1 on proliferation, migration and myofibroblastic differentiation in an endothelial cell-fibroblast co-culture model. J Mol Histol 39:37–47, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. Patil, P. S., N. Fountas-Davis, H. Huang, M. M. Evancho-Chapman, J. A. Fulton, L. P. Shriver, and N. D. Leipzig. Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability. Acta Biomater 36:164–174, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patil, P. S., and N. D. Leipzig. Fluorinated methacrylamide chitosan sequesters reactive oxygen species to relieve oxidative stress while delivering oxygen. J Biomed Mater Res A 105(8):2368–2374, 2017.

    Article  CAS  PubMed  Google Scholar 

  27. Pedraza, E., M. M. Coronel, C. A. Fraker, C. Ricordi, and C. L. Stabler. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc Natl Acad Sci USA 109:4245–4250, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riess, J. G., and M. P. Krafft. Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 19:1529–1539, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Schreml, S., R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas. Oxygen in acute and chronic wound healing. Br J Dermatol 163:257–268, 2010.

    Article  CAS  PubMed  Google Scholar 

  30. Sen, C. K. Wound healing essentials: let there be oxygen. Wound Repair Regen 17:1–18, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sen, C. K., G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Siddiqui, A., R. D. Galiano, D. Connors, E. Gruskin, L. Wu, and T. A. Mustoe. Differential effects of oxygen on human dermal fibroblasts: acute versus chronic hypoxia. Wound Repair Regen 4:211–218, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Spahn, D. R. Current status of artificial oxygen carriers. Adv Drug Deliv Rev 40:143–151, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Tandara, A. A., and T. A. Mustoe. Oxygen in wound healing–more than a nutrient. World J Surg 28:294–300, 2004.

    Article  PubMed  Google Scholar 

  35. Thackham, J. A., D. L. McElwain, and R. J. Long. The use of hyperbaric oxygen therapy to treat chronic wounds: a review. Wound Repair Regen 16:321–330, 2008.

    Article  PubMed  Google Scholar 

  36. Tremper, K. K., and S. T. Anderson. Perfluorochemical emulsion oxygen transport fluids: a clinical review. Annu Rev Med 36:309–313, 1985.

    Article  CAS  PubMed  Google Scholar 

  37. Ward, C. L., B. T. Corona, J. J. Yoo, B. S. Harrison, and Christ G.J. Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PLoS ONE 8:e72485, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wijekoon, A., N. Fountas-Davis, and N. D. Leipzig. Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9:5653–5664, 2013.

    Article  CAS  PubMed  Google Scholar 

  39. Winter, G. D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294, 1962.

    Article  CAS  PubMed  Google Scholar 

  40. Xia, Y. P., Y. Zhao, J. W. Tyrone, A. Chen, and T. A. Mustoe. Differential activation of migration by hypoxia in keratinocytes isolated from donors of increasing age: implication for chronic wounds in the elderly. J Invest Dermatol 116:50–56, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the National Institute of General Medical Sciences of the National Institutes of Health under award number R15GM104851. We would like to thank Steve Roberts for design and construction of the tri-gas incubator, Judy Fulton from Akron General Hospital/Serena Group for tissue donation and valuable feedback, as well as thank group members Ashley Wilkinson, Andrew McClain, Mahmoud Farrag, Pritam Patil and Trevor Ham for assistance with various techniques, biomolecular assays and interpretation.

Conflict of interest

Sridhar Akula, Ivy Brosch and Nic D. Leipzig declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and N.D.L. designed the study, analyzed data, and wrote the manuscript. S.A. performed all experiments, while I.K.B. established techniques and performed initial experiments for PrestoBlue, PicoGreen, and microBCA experiments.

Corresponding author

Correspondence to Nic D. Leipzig.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akula, S., Brosch, I.K. & Leipzig, N.D. Fluorinated Methacrylamide Chitosan Hydrogels Enhance Cellular Wound Healing Processes. Ann Biomed Eng 45, 2693–2702 (2017). https://doi.org/10.1007/s10439-017-1893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1893-6

Keywords

Navigation