Skip to main content
Log in

Tissue Ablation by a Synergistic Combination of Electroporation and Electrolysis Delivered by a Single Pulse

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A synergistic combination of electroporation and electrolysis (SEE) has been found with distinct advantages over tissue ablation by electrolysis or electroporation alone. Minimally invasive tissue ablation by electrolysis uses a low magnitude direct electric current to produce a lesion due to the creation of chemical products that result in cell death. Electroporation creates permeabilizations in the cell membrane which may lead to loss of cell homeostasis and cell death. When these two modes of tissue ablation are combined, a more effective method of cell death is achieved, likely due to the ability of electrolytic products to access the cell interior through the permeabilized cell membrane. Here, a new method of achieving SEE tissue ablation is obtained through the application of a single exponential decay pulse. This parametric study explores the mechanisms of damage as a function of the initial electric field and amount of delivered charge. It is seen that treatment parameters can dictate the mode of tissue ablation, either by SEE or by irreversible electroporation alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amory, R. A Treatise on Electrolysis and its Therapeutical and Surgical Treatement in Disease. New York: William Woof & Co., 1886.

    Google Scholar 

  2. Choi, Y. S., et al. Preclinical analysis of irreversible electroporation on rat liver tissues using a microfabricated electroporator. Tissue Eng. Part C. 16(2):1245–1253, 2010.

    Article  Google Scholar 

  3. Colombo, L., G. Gonzalez, G. Marshall, F. V. Molina, A. Soba, C. Suarez, et al. Ion transport in tumors under electrochemical treatment: in vivo, in vitro and in silico modeling. Bioelectrochemistry. 71(2):223–232, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Czymek, R., D. Dinter, S. Loeffler, M. Gebhard, T. Laubert, A. Lubienski, et al. Electrochemical treatment: an investigation of dose–response relationships using an isolated liver perfusion model. Saudi J. Gastroenterol. 17(5):335–342, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Czymek, R., J. Nassrallah, M. Gebhard, A. Schmidt, S. Limmer, M. Kleemann, et al. Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo. Surg. Oncol.-Oxford. 21(2):79–86, 2012.

    Article  Google Scholar 

  6. Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33(2):223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Davalos, R.V. and Rubinsky, B., inventors; The Regents of the University of California, assignee. Tissue ablation with irreversible electroporation. USA 2004.

  8. Edd, J., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In-vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53(5):1409–1415, 2006.

    Article  PubMed  Google Scholar 

  9. Gravante, G., S. L. Ong, M. S. Metcalfe, N. Bhardwaj, G. J. Maddern, D. M. Lloyd, and A. R. Dennison. Experimental applications of electrolysis in the treatment of liver and pancreatic tumours: principles, preclinical and clinical observations and future perspectives. Surg. Oncol. 20:106–120, 2011.

    Article  CAS  PubMed  Google Scholar 

  10. Miklavcic, D., A. Fajgelj, and G. Sersa. Tumor treatement by direct electric-current-electrode material deposition. Bioelectrochem. Bioenerg. 35(1–2):93–97, 1994.

    Article  CAS  Google Scholar 

  11. Miklavcic, D., T. Jarm, M. Cemazar, G. Sersa, D. J. An, J. Belehradek, et al. Tumor treatment by direct electric current. Tumor perfusion changes. Bioelectrochem. Bioenerg. 43(2):253–256, 1997.

    Article  CAS  Google Scholar 

  12. Miklavcic, D., L. M. Mir, and P. T. Vernier. Introduction to third special electroporation-based technologies and treatments issue. J. Membr. Biol. 246(10):723–724, 2013.

    Article  CAS  Google Scholar 

  13. Miklavcic, D., D. Semrov, V. Valencic, G. Sersa, and L. Vodovnik. Tumor treatment by direct electric current: computation of electric current and power density distribution. Electro- Magnetobiol. 16(2):119–128, 1991.

    Article  Google Scholar 

  14. Mir, L. M., S. Orlowski, J. J. Belehradek, and C. Paoletti. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer. 27(1):68–72, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Moir, J., S. A. White, J. J. French, P. Littler, and D. M. Manas. Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. EJSO. 40:1598–1604, 2014.

    Article  CAS  PubMed  Google Scholar 

  16. Neumann, E., and K. Rosenheck. Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 29(10):279–290, 1972.

    Article  Google Scholar 

  17. Neumann, E., M. Schaeffer-Ridder, Y. Wang, and P. H. Hofschneider. Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J. 1(7):841–845, 1982.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Neumann, E., A. E. Sowers, and C. A. Jordan (eds.). Electroporation and Electrofusion in Cell Biology. New York: Plenum Press, 1989.

    Google Scholar 

  19. Olaiz, N., C. Suarez, M. Risk, F. Molina, and G. Marshall. Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors. Electrochem. Commun. 12(1):94–97, 2010.

    Article  CAS  Google Scholar 

  20. Phillips, M., N. Raju, L. Rubinsky, and B. Rubinsky. Modulating electrolytic tissue ablation with reversible electroporation pulses. Technology. 3(1):1–9, 2015.

    Article  Google Scholar 

  21. Phillips, M., L. Rubinsky, A. Meir, N. Raju, and B. Rubinsky. Combining electrolysis and electroporation for tissue ablation. Technol. Cancer Res. Treat. 14(4):395–410, 2015.

    Article  CAS  PubMed  Google Scholar 

  22. Rebersek, M., and D. Miklavcic. Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika. 52(1):12–19, 2011.

    Google Scholar 

  23. Rubinsky, L., Guenther, E., Mikus, P., Stehling, M., and Rubinsky, B. Electrolytic effect during tissue ablation by electroporation. Technol. Cancer Res. Treat. 2015 Aug. 31 [Epub].

  24. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6(1):37–48, 2007.

    Article  PubMed  Google Scholar 

  25. Sale, A. J. H., and W. A. Hamilton. Effects of high electric fields on microorganisms. 1. Killing of bacteria and yeasts. Biochimica et Biophysica Acta. 148:781–788, 1967.

    Article  Google Scholar 

  26. Saulis, G., R. Lape, R. Praneviciute, and D. Mickevicius. Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry. 67(1):101–108, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Sersa, G., T. Jarm, T. Kotnik, A. Coer, M. Podkrajsek, M. Sentjurc, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer. 98:388–398, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teissie, J. Electropermeabilization of the Cell Membrane. In: Electroporation Protocols: Preclinical and Clinical Gene Medicine2nd, edited by S. Li, J. Cutrera, R. Heller, and J. Teisse. New York: Humana Press, 2014, pp. 25–46.

    Chapter  Google Scholar 

  29. Titomirov, A. V., S. Sukharev, and E. Kistanova. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochimica et Biophysica Acta. 1088(1):131–134, 1991.

    Article  CAS  PubMed  Google Scholar 

  30. Turjanski, P., N. Olaiz, P. Abou-Adal, C. Suarez, M. Risk, and G. Marshall. pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations. Electrochimica Acta. 54(26):6199–6206, 2009.

    Article  CAS  Google Scholar 

  31. Turjanski, P., N. Olaiz, F. Maglietti, S. Michinski, C. Suarez, F. V. Molina, et al. The role of pH fronts in reversible electroporation. PloS One. 6(4):e17303, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yarmush, M. L., A. Goldberg, G. Sersa, T. Kotnik, and D. Miklavcic. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project draws from earlier unpublished work by Inter Science GmbH. We also acknowledge the partial financial support from Inter Science GmbH. Inter Science GmbH had no input in the design of the experiments or the analysis of the data.

Conflict of interest

B.R. has a financial interest in Inter Science GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Phillips.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, M., Krishnan, H., Raju, N. et al. Tissue Ablation by a Synergistic Combination of Electroporation and Electrolysis Delivered by a Single Pulse. Ann Biomed Eng 44, 3144–3154 (2016). https://doi.org/10.1007/s10439-016-1624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1624-4

Keywords

Navigation