Skip to main content
Log in

Evaluation of Gelatin Microparticles as Adherent-Substrates for Mesenchymal Stem Cells in a Hydrogel Composite

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Due to the lack of cell-adhesive moieties in traditional synthetic hydrogels, the present work investigated the use of degradable gelatin microparticles (GMPs) as temporary adherent substrates for anchorage-dependent mesenchymal stem cells (MSCs). MSCs were seeded onto GMPs of varying crosslinking densities and sizes to investigate their role on influencing MSC differentiation and aggregation. The MSC-seeded GMPs were then encapsulated in poly(ethylene glycol)-based hydrogels and cultured in serum-free, growth factor-free osteochondral medium. Non-seeded MSCs co-encapsulated with GMPs in the hydrogels were used as a control for comparison. Over the course of 35 days, MSCs seeded on GMPs exhibited more cell–cell contacts, greater chondrogenic potential, and a down-regulation of osteogenic markers compared to the controls. Although the factors of GMP crosslinking and size had nominal influence on MSC differentiation and aggregation, GMPs demonstrate potential as an adherent-substrate for improving cell delivery from hydrogel scaffolds by facilitating cell–cell contacts and improving MSC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ACAN :

Aggrecan

ALP:

Alkaline phosphatase

APS:

Ammonium persulfate

CC-PBS:

Collagenase-containing PBS

CDH2 :

N-cadherin

COL1 :

Type I collagen

COL2 :

Type II collagen

ddH2O:

Distilled, deionized water

FBS:

Fetal bovine serum

GAG:

Glycosaminoglycan

GMP:

Gelatin microparticle

HYP:

Hydroxyproline

LG-DMEM:

Low glucose-Dulbecco’s modified Eagle’s medium

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cell

OM:

Osteochondral medium

OPF:

Oligo(poly(ethylene glycol) fumarate

PBS:

Phosphate-buffered saline

PEG:

Poly(ethylene glycol)

RT-PCR:

Reverse transcription polymerase chain reaction

RUNX2 :

Runt-related transcription factor 2

SOX9 :

(Sex determining region Y)-box 9

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  1. Bates, R. C., N. S. Edwards, and J. D. Yates. Spheroids and cell survival. Crit. Rev. Oncol. Hematol. 36:61–74, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Bhumiratana, S., R. E. Eton, S. R. Oungoulian, L. Q. Wan, G. A. Ateshian, and G. Vunjak-Novakovic. Large, stratified, and mechanically functional human cartilage grown in vitro by mesenchymal condensation. Proc. Natl. Acad. Sci. USA 111:6940–6945, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bian, L., M. Guvendiren, R. L. Mauck, and J. A. Burdick. Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc. Natl. Acad. Sci. USA 110:10117–10122, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, L., F. Yang, G. Liu, D. Yu, H. Li, Q. Fan, Y. Gan, T. Tang, and K. Dai. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920, 2011.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, A. X., M. D. Hoffman, C. S. Chen, A. D. Shubin, D. S. Reynolds, and D. S. Benoit. Disruption of cell-cell contact-mediated notch signaling via hydrogel encapsulation reduces mesenchymal stem cell chondrogenic potential: winner of the Society for Biomaterials Student Award in the Undergraduate Category, Charlotte, NC, April 15 to 18, 2015. J. Biomed. Mater. Res. A 103:1291–1302, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guo, X., J. Liao, H. Park, A. Saraf, R. M. Raphael, Y. Tabata, F. K. Kasper, and A. G. Mikos. Effects of TGF-beta 3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater. 6:2920–2931, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayashi, K., and Y. Tabata. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater. 7:2797–2803, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Ho, I. A. W., K. Y. W. Chan, W. H. Ng, C. M. Guo, K. M. Hui, P. Cheang, and P. Y. P. Lam. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27:1366–1375, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kinard, L. A., F. K. Kasper, and A. G. Mikos. Synthesis of oligo(poly(ethylene glycol) fumarate). Nat. Protoc. 7:1219–1227, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lam, J., S. Lu, V. V. Meretoja, Y. Tabata, A. G. Mikos, and F. K. Kasper. Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomater. 10:1112–1123, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lau, T. T., L. Q. Lee, W. Leong, and D. A. Wang. Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. Biomed. Mater. 7:065003, 2012.

    Article  PubMed  Google Scholar 

  12. Leong, W., T. T. Lau, and D. A. Wang. A temperature-cured dissolvable gelatin microsphere-based cell carrier for chondrocyte delivery in a hydrogel scaffolding system. Acta Biomater. 9:6459–6467, 2013.

    Article  CAS  PubMed  Google Scholar 

  13. Li, Y., J. Rodrigues, and H. Tomas. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41:2193–2221, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Lim, C. T., X. Ren, M. H. Afizah, S. Tarigan-Panjaitan, Z. Yang, Y. Wu, K. S. Chian, A. G. Mikos, and J. H. Hui. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Tissue Eng. Part A 19:1852–1861, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Lozito, T. P., and R. S. Tuan. Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs. J. Cell. Physiol. 226:385–396, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Lu, S., J. Lam, J. E. Trachtenberg, E. J. Lee, H. Seyednejad, J. J. J. P. van den Beucken, Y. Tabata, M. E. Wong, J. A. Jansen, A. G. Mikos, and F. K. Kasper. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35:8829–8839, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mannello, F., G. A. Tonti, G. P. Bagnara, and S. Papa. Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24:475–481, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Meretoja, V. V., R. L. Dahlin, S. Wright, F. K. Kasper, and A. G. Mikos. The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials 34:4266–4273, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakajima, K., J. Fujita, M. Matsui, S. Tohyama, N. Tamura, H. Kanazawa, T. Seki, Y. Kishino, A. Hirano, M. Okada, R. Tabei, M. Sano, S. Goto, Y. Tabata, and K. Fukuda. Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS One 10:e0133308, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, A. H., Y. Wang, D. E. White, M. O. Platt, and T. C. McDevitt. MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation. Biomaterials 76:66–75, 2016.

    Article  CAS  PubMed  Google Scholar 

  21. Nicodemus, G. D., and S. J. Bryant. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14:149–165, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, H., J. S. Temenoff, Y. Tabata, A. I. Caplan, and A. G. Mikos. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reilly, G. C., and A. J. Engler. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43:55–62, 2010.

    Article  PubMed  Google Scholar 

  24. Ries, C., V. Egea, M. Karow, H. Kolb, M. Jochum, and P. Neth. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Santoro, M., A. M. Tatara, and A. G. Mikos. Gelatin carriers for drug and cell delivery in tissue engineering. J. Control Release 190:210–218, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Sart, S., A. C. Tsai, Y. Li, and T. Ma. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 20:365–380, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schmittgen, T. D., and K. J. Livak. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3:1101–1108, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21:3307–3329, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabata, Y., S. Hijikata, M. Muniruzzaman, and Y. Ikada. Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J. Biomater. Sci. 10:79–94, 1999.

    Article  CAS  Google Scholar 

  30. Visse, R., and H. Nagase. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92:827–839, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L., S. Lu, J. Lam, F. K. Kasper, and A. G. Mikos. Fabrication of cell-laden macroporous biodegradable hydrogels with tunable porosities and pore sizes. Tissue Eng. Part C Methods 21:263–273, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01-AR048756 and R01-AR068073). The authors acknowledge the assistance of Brandon T. Smith with the rabbit bone marrow harvest, Marco Santoro and Tiffany N. Vo with MSC culture, and Kelsea M. Hubka with immunocytochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios G. Mikos.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Invited submission to the special issue of “Biomaterials” in Annals of Biomedical Engineering, guest edited by Michael Detamore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Lee, E.J., Lam, J. et al. Evaluation of Gelatin Microparticles as Adherent-Substrates for Mesenchymal Stem Cells in a Hydrogel Composite. Ann Biomed Eng 44, 1894–1907 (2016). https://doi.org/10.1007/s10439-016-1582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1582-x

Keywords

Navigation