Skip to main content

Advertisement

Log in

Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3–7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berard, X., S. Deglise, F. Alonso, F. Saucy, P. Meda, L. Bordenave, J. M. Corpataux, and J. A. Haefliger. Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins. J. Vasc. Surg. 57(5):1371–1382, 2013.

    Article  PubMed  Google Scholar 

  2. Berglund, H., H. Luo, T. Nishioka, M. C. Fishbein, N. L. Eigler, S. W. Tabak, and R. J. Siegel. Highly localized arterial remodeling in patients with coronary atherosclerosis: an intravascular ultrasound study. Circulation 96(5):1470–1476, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25):2379–2393, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Z., I. C. Peng, X. Cui, Y. S. Li, S. Chien, and J. Y. Shyy. Shear stress, SIRT1, and vascular homeostasis. Proc. Natl. Acad. Sci. USA 107(22):10268–10273, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chesler, N. C., D. N. Ku, and Z. S. Galis. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am. J. Physiol. 277(5 Pt 2):H2002–H2009, 1999.

    CAS  PubMed  Google Scholar 

  6. Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36(4):554–562, 2008.

    Article  PubMed Central  Google Scholar 

  7. Davis, M. E., I. M. Grumbach, T. Fukai, A. Cutchins, and D. G. Harrison. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J. Biol. Chem. 279(1):163–168, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Del Corso, L., D. Moruzzo, B. Conte, M. Agelli, A. M. Romanelli, F. Pastine, M. Protti, F. Pentimone, and G. Baggiani. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 49(5):361–371, 1998.

    Article  PubMed  Google Scholar 

  9. Esteban, V., N. Mendez-Barbero, L. J. Jimenez-Borreguero, M. Roque, L. Novensa, A. B. Garcia-Redondo, M. Salaices, L. Vila, M. L. Arbones, M. R. Campanero, and J. M. Redondo. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. J. Exp. Med. 208(10):2125–2139, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fleenor, B. S., K. D. Marshall, J. R. Durrant, L. A. Lesniewski, and D. R. Seals. Arterial stiffening with ageing is associated with transforming growth factor-beta 1-related changes in adventitial collagen: reversal by aerobic exercise. J. Physiol. Lond. 588(20):3971–3982, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fleming, I., J. Bauersachs, A. Schafer, D. Scholz, J. Aldershvile, and R. Busse. Isometric contraction induces the Ca2+ -independent activation of the endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 96(3):1123–1128, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer, 1990.

    Book  Google Scholar 

  13. Galis, Z. S., and J. J. Khatri. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90(3):251–262, 2002.

    CAS  PubMed  Google Scholar 

  14. Gambillara, V., C. Chambaz, G. Montorzi, S. Roy, N. Stergiopulos, and P. Silacci. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am. J. Physiol. Heart Circ. Physiol. 290(6):H2320–H2328, 2006.

    Article  CAS  PubMed  Google Scholar 

  15. Garanich, J. S., M. Pahakis, and J. M. Tarbell. Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am. J. Physiol. Heart Circ. Physiol. 288(5):H2244–H2252, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Guo, F., X. Li, J. Peng, Y. Tang, Q. Yang, L. Liu, Z. Wang, Z. Jiang, M. Xiao, C. Ni, R. Chen, D. Wei, and G. X. Wang. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann. Biomed. Eng. 42(9):1978–1988, 2014.

    Article  PubMed  Google Scholar 

  17. Hale, S. A., L. Weger, M. Mandala, and G. Osol. Reduced NO signaling during pregnancy attenuates outward uterine artery remodeling by altering MMP expression and collagen and elastin deposition. Am. J. Physiol. Heart Circ. Physiol. 301(4):H1266–H1275, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  PubMed  Google Scholar 

  20. Han, H. C. The theoretical foundation for artery buckling under internal pressure. J. Biomech. Eng. 131(12):124501, 2009.

    Article  PubMed  Google Scholar 

  21. Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49(3):185–197, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han, H. C., J. K. Chesnutt, J. R. Garcia, Q. Liu, and Q. Wen. Artery buckling: new phenotypes, models, and applications. Ann. Biomed. Eng. 41(7):1399–1410, 2013.

    Article  PubMed  Google Scholar 

  23. Hayman, D. M., Y. Xiao, Q. Yao, Z. Jiang, M. L. Lindsey, and H. C. Han. Alterations in pulse pressure affect artery function. Cell. Mol. Bioeng. 5(4):474–487, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayman, D. M., J. Zhang, Q. Liu, Y. Xiao, and H. C. Han. Smooth muscle cell contraction increases the critical buckling pressure of arteries. J. Biomech. 46(4):841–844, 2013.

    Article  PubMed  Google Scholar 

  25. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52(2):195–200, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Khalafvand, S. S., and H. C. Han. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study. J. Biomech. Eng. 137(6):061007, 2015.

    Article  Google Scholar 

  28. Kim, Y. S., Z. S. Galis, A. Rachev, H. C. Han, and R. P. Vito. Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries. J. Biomech. Eng. 131(1):011009, 2009.

    Article  PubMed  Google Scholar 

  29. Ku, D. N. Blood flow in arteries. Ann. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  30. Langille, B. L. Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74(7):834–841, 1996.

    Article  CAS  PubMed  Google Scholar 

  31. Lee, A. Y., B. Han, S. D. Lamm, C. A. Fierro, and H. C. Han. Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302(4):H873–H884, 2012.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, Y. U., D. Hayman, E. A. Sprague, and H. C. Han. Effects of axial stretch on cell proliferation and intimal thickness in arteries in organ culture. Cell. Mol. Bioeng. 3(3):286–295, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liao, J. K. Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123(2):540–541, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, K., D. M. Lloyd-Jones, Y. Liu, X. Bi, D. Li, and J. C. Carr. Potential quantitative magnetic resonance imaging biomarkers of coronary remodeling in older hypertensive patients. Arterioscler. Thromb. Vasc. Biol. 32(7):1742–1747, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Osidak, M. S., E. O. Osidak, M. A. Akhmanova, S. P. Domogatsky, and A. S. Domogatskaya. Fibrillar, fibril-associated and basement membrane collagens of the arterial wall: architecture, elasticity and remodeling under stress. Curr. Pharm. Des. 21(9):1124–1133, 2015.

    Article  CAS  PubMed  Google Scholar 

  36. Sho, E., M. Sho, T. M. Singh, H. Nanjo, M. Komatsu, C. Xu, H. Masuda, and C. K. Zarins. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp. Mol. Pathol. 73(2):142–153, 2002.

    Article  CAS  PubMed  Google Scholar 

  37. Silacci, P., K. Formentin, K. Bouzourene, F. Daniel, H. R. Brunner, and D. Hayoz. Unidirectional and oscillatory shear stress differentially modulate NOS III gene expression. Nitric Oxide 4(1):47–56, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Smedby, O., and L. Bergstrand. Tortuosity and atherosclerosis in the femoral artery: what is cause and what is effect? Ann. Biomed. Eng. 24(4):474–480, 1996.

    Article  CAS  PubMed  Google Scholar 

  39. Ward, M. R., G. Pasterkamp, A. C. Yeung, and C. Borst. Arterial remodeling. Mechanisms and clinical implications. Circulation 102(10):1186–1191, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Xiao, Y., D. Hayman, S. S. Khalafvand, M. L. Lindsey, and H. C. Han. Artery buckling stimulates cell proliferation and NF-kappaB signaling. Am. J. Physiol. Heart Circ. Physiol. 307(4):H542–H551, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao, Y., Y. Zhong, H. Su, Z. Zhou, P. Chiao, and G. Zhong. NF-kappa B activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis. J. Immunol. 174(3):1701–1708, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Xu, J., and G. P. Shi. Vascular wall extracellular matrix proteins and vascular diseases. Biochim. Biophys. Acta 1842(11):2106–2119, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J., Q. Liu, and H. C. Han. An in vivo rat model of artery buckling for studying wall remodeling. Ann. Biomed. Eng. 42(8):1658–1667, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ziegler, T., P. Silacci, V. J. Harrison, and D. Hayoz. Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension 32(2):351–355, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Granzins Meat Market at New Braunfels, TX, Watark at Poth, TX, and the Pathology Lab at UTHSCSA for their help in this work. This study was supported by Grant HL095852 from the National Heart, Lung, and Blood Institute. It was also partially supported by HHSN 268201000036C (N01-HV-00244) for the San Antonio Cardiovascular Proteomics Center from the National Heart, Lung, and Blood Institute and partially supported by National Natural Science Foundation of China through Grant 11229202.

Conflict of interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, Q. & Han, HC. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture. Ann Biomed Eng 44, 2840–2850 (2016). https://doi.org/10.1007/s10439-016-1571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1571-0

Keywords

Navigation