Skip to main content
Log in

Vibrating Frequency Thresholds in Mice and Rats: Implications for the Effects of Vibrations on Animal Health

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vibrations in research facilities can cause complex animal behavioral and physiological responses that can affect animal health and research outcomes. The goal of this study was to determine the range of frequency values, where animals are unable to attenuate vibrations, and therefore may be most susceptible to their effects. Anesthetized and euthanized adult rats and mice were exposed to vibration frequencies over a wide range (0–600 Hz) and at a constant magnitude of 0.3 m/s2. Euthanized animals were additionally exposed to vibrations at an acceleration of 1 m/s2. The data showed that at most frequencies rodents were able to attenuate vibration magnitudes, with values for the back-mounted accelerometer being substantially less than that of the table. At frequencies of 41–60 Hz mice did not attenuate vibration magnitude, but instead the magnitude of the table and animal were equal or amplified. Rats experienced the same pattern of non-attenuation between 31 and 50 Hz. Once euthanized, the mice vibrated at a slightly more elevated frequency (up to 100 Hz). Based on these results, it may be prudent that in laboratory settings, vibrations in the ranges reported here should be accounted for as possible contributors to animal stress and/or biomechanical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abeyesinghe, S. M., C. M. Wathes, C. J. Nicol, and J. M. Randall. The aversion of broiler chickens to concurrent vibrational and thermal stressors. Appl. Anim. Behav. Sci. 73:199–215, 2011.

    Article  Google Scholar 

  2. Ariizumi, M., and A. Okada. Effect of whole-body vibration on the rat brain content of serotonin and plasma corticosterone. Eur. J. Appl. Physiol. 52:15–19, 1983.

    Article  CAS  Google Scholar 

  3. Buckley, J. P., and H. H. Smooker. Cardiovascular and biochemical effects of chronic intermittent neurogenic stimulation. In: Physiological Effects of Noise, edited by B. L. Welch, and A. S. Welch. New York: Plenum Press, 1970, pp. 74–85.

    Google Scholar 

  4. Ceccarelli, G., L. Benedetti, D. Galli, D. Prè, G. Silvani, N. Crosetto, G. Magenes, and M. G. C. De Angelis. MGC. Low-amplitude high-frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells. J. Tissue Eng. Regen. Med. 8:396–406, 2012.

    Article  PubMed  Google Scholar 

  5. Christiansen, B. A., and M. J. Silva. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Ann. Biomed. Eng. 32:1149–1156, 2006.

    Article  Google Scholar 

  6. Edwards, R. G., E. P. McCutcheon, and C. F. Knapp. Cardiovascular changes produced by brief whole-body vibration of animals. J. Appl. Physiol. 32:386–390, 1972.

    CAS  PubMed  Google Scholar 

  7. Faith, R. F., and S. J. Miller. The need for sound and vibration standards in US research animal rooms. ALN Magazine July/August: 31–38, 2007.

  8. Fritton, J. C., C. T. Rubin, Y. X. Qin, and K. J. McLeod. Whole-body vibration in the skeleton: development of a resonance-based testing device. Ann. Biomed. Eng. 25:831–839, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Gebresenbet, G., S. Aradom, F. S. Bulitta, and E. Hjerpe. Vibration levels and frequencies on vehicle and animals during transport. Biosyst. Eng. 110:10–19, 2011.

    Article  Google Scholar 

  10. Griffin, M. J. Whole-body vibration and health. In: Handbook of Human Vibration, edited by M. J. Griffin. San Diego: Elsevier Academic Press, 1996, pp. 171–220.

    Google Scholar 

  11. Hill, P. S. M. Vibration and animal communication: a review. Integr. Comp. Biol. 41:1135–1142, 2001.

    Article  Google Scholar 

  12. Judex, S., S. Boyd, Y.-X. Qin, S. Turner, K. Ye, R. Müller, and C. Rubin. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. J. Biomed. Eng. 31:12–20, 2003.

    Google Scholar 

  13. Judex, S., L.-R. Donahue, and C. Rubin. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J. 16:1280–1282, 2002.

    CAS  PubMed  Google Scholar 

  14. Li, Y., Y. Liu, Z. Jiang, J. Guan, G. Yi, S. Cheng, B. Yang, T. Fu, and Z. Wang. Behavioral changes related to Wenchuan devastating earthquake in mice. Bioelectromagnetics 30:613–620, 2009.

    Article  PubMed  Google Scholar 

  15. Ljunggren, F., J. Wang, and A. Agren. Human vibration perception from single- and dual-frequency components. J. Sound Vib. 300:13–24, 2007.

    Article  Google Scholar 

  16. Lynch, M. A., M. D. Brodt, and M. J. Silva. Skeletal effects of whole-body vibration in adult and aged mice. J. Orthopaed. Res. 28:241–247, 2009.

    Google Scholar 

  17. McKeehen, J. N., S. A. Novotny, K. A. Baltgalvis, J. A. Call, D. J. Nuckley, and D. A. Lowe. Adaptations of mouse skeletal muscle to low-intensity vibration training. Med. Sci. Sports Exerc. 45:1051–1059, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Norton, J. N., W. L. Kinard, and R. P. Reynolds. Comparative vibration levels perceived among species in a laboratory animal facility. J. Am. Assoc. Lab. Anim. Sci. 50:653–659, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Parsons, K. C., and M. J. Griffin. Whole-body vibration perception threshold. J. Sound Vib. 121:237–258, 1988.

    Article  Google Scholar 

  20. Perremans, S., J. M. Randall, G. Rombouts, E. Decuypere, and R. Geers. Effect of whole-body vibration in the vertical axis on cortisol and adrenocorticotropic hormone levels in piglets. J. Anim. Sci. 79:975–981, 2001.

    CAS  PubMed  Google Scholar 

  21. Prisby, R. D., M.-H. Lafage-Proust, L. Malaval, A. Belli, and L. Vico. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res. Rev. 7:319–329, 2008.

    Article  PubMed  Google Scholar 

  22. Randall, J. M., J. A. Duggan, M. A. Alami, and R. P. White. Frequency weighting for the aversion of broiler chickens to horizontal and vertical vibration. J. Agric. Eng. Res. 68:387–397, 1997a.

  23. Randall, J. M., R. T. Mathews, and M. A. Stiles. Resonant frequencies of standing humans. Ergonomics 40:879–886, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds, R. P., W. L. Kinard, J. J. Degraff, N. Leverage, and J. N. Norton. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab. Anim. Sci. 49:592–597, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Romans, J. Effect of severe whole-body vibration on mice and methods of protection from vibration injury. WADC Techical Report 58-107, ASTIA Document No. AD 151070. Wright-Patterson Air Force Base (OH): Wright Air Development Centre, 1958.

  26. Rubin, C. T., E. Capilla, Y. K. Luu, B. Busa, H. Crawford, D. J. Noland, V. Mittal, C. J. Rosen, J. E. Pessin, and S. Judex. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl Acad. Sci. U.S.A. 104:17879–17884, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rubin, C. T., D. W. Sommerfeldt, S. Judex, and Y.-X. Qin. Inhibition of osteopenia by low-magnitude, high-frequency mechanical stimuli. Drug Discov. Today 6:848–858, 2001.

    Article  PubMed  Google Scholar 

  28. Rubin, C. T., A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLoed. Low mechanical signal strengthen long bones. Nature 412:603–604, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Rubin, C. T., A. S. Turner, R. Muller, E. Mittra, K. McLoed, W. Lin, and Y.-X. Qin. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:349–357, 2002.

    Article  PubMed  Google Scholar 

  30. Sackler, A. M., and A. S. Weltman. Effects of vibration on the endocrine system of male and female rats. Aerospace Med. 37:158–166, 1966.

    CAS  PubMed  Google Scholar 

  31. Sales, G. D., K. J. Wilson, K. E. Spencer, and S. R. Milligan. Environmental ultrasound in laboratories and animal houses: a possible cause for concern in the welfare and use of laboratory animals. Lab. Anim. 22:369–375, 1988.

    Article  CAS  PubMed  Google Scholar 

  32. Toraason, M. A., D. W. Badger, and G. L. Wright. Gastroinstestinal response in rats to vibration and restraint. Environ. Res. 23:341–347, 1980.

    Article  CAS  PubMed  Google Scholar 

  33. Ushakov, I. B., N. V. Soloshenko, and A. P. Koslovskij. The examination of resonance frequencies of vibration in rats. Kosm Biol Aviakosm Med. 17:65–68, 1983.

    CAS  PubMed  Google Scholar 

  34. Ward, K., C. Alsop, J. Caulton, C. Rubin, J. Adams, and Z. Mughal. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J. Bone Miner. Res. 19:360–369, 2004.

    Article  PubMed  Google Scholar 

  35. Wegner, K. H., J. D. Freeman, S. Fulzele, D. M. Immel, B. D. Powell, P. Molitor, Y. J. Chao, H.-S. Gao, M. Wlsalanty, M. W. Hamrick, C. M. Isales, and J. C. Yu. Effect of whole-body vibration on bone properties in aging mice. Bone 47:746–755, 2010.

    Article  Google Scholar 

  36. Xie, L., J. M. Jacobson, E. S. Choi, B. Busa, L. R. Donahue, L. M. Miler, C. T. Rubin, and S. Judex. Low-level mechanical vibrations can influence bone resorption in the growing skeleton. Bone 39:1059–1066, 2006.

    Article  PubMed  Google Scholar 

  37. Xie, L., C. T. Rubin, and S. Judex. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J. Appl. Physiol. 104:1056–1062, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Pramodh Ganapathy, Jozsef Bordas, and Drs. Roxanne Larsen and Charlotte Miller for their help and support throughout this project. This study was funded by the American Association of Laboratory Animal Science Grants for Laboratory Animal Science (GLAS) and the American College of Laboratory Animal Medicine Foundation Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karyne N. Rabey.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabey, K.N., Li, Y., Norton, J.N. et al. Vibrating Frequency Thresholds in Mice and Rats: Implications for the Effects of Vibrations on Animal Health. Ann Biomed Eng 43, 1957–1964 (2015). https://doi.org/10.1007/s10439-014-1226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1226-y

Keywords

Navigation