Skip to main content
Log in

Birefringence and Second Harmonic Generation on Tendon Collagen Following Red Linearly Polarized Laser Irradiation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ = 632.8 nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P = 6.0 mW, I = 21.2 mW/cm2, E ≈ 0.3 J, ED = 1.0 J/cm2) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ait-Belkacem, D., et al. Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging. Opt. Express 18(14):14859–14870, 2010.

    Article  PubMed  CAS  Google Scholar 

  2. Aspden, R. M., Y. E. Yarker, and D. W. Hukins. Collagen orientations in the meniscus of the knee joint. J. Anat. 140(Pt 3):371–380, 1985.

    PubMed  Google Scholar 

  3. Bastos, J. L. N., R. F. Z. Lizarelli, and N. A. Parizotto. Comparative study of laser and LED systems of low intensity applied to tendon healing. Laser Phys. 19(9):1925–1931, 2009.

    Article  CAS  Google Scholar 

  4. Boyd, R. W. Nonlinear Optics, 1 ed. New York: Academic Press, p. 439, 1992.

  5. Carrinho, P. M., et al. Comparative study using 685-nm and 830-nm lasers in the tissue repair of tenotomized tendons in the mouse. Photomed. Laser Surg. 24(6):754–758, 2006.

    Article  PubMed  Google Scholar 

  6. Castronuovo, G., G. Fava, and S. Giavelli. The skin role during a low level laser therapy. In: Lasers Applications in Medicine. Monduzzi: Bologna, 1992, pp. 19–24.

  7. Chung, H., et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40(2):516–533, 2012.

    Article  PubMed  Google Scholar 

  8. Cox, R. W., R. A. Grant, and R. W. Horne. The structure and assembly of collagen fibrils. I. Native-collagen fibrils and their formation from tropocollagen. J. R. Microsc. Soc. 87:123–142, 1967.

    Article  PubMed  CAS  Google Scholar 

  9. de Aro, A. A., B. D. Vidal, and E. R. Pimentel. Biochemical and anisotropical properties of tendons. Micron 43(2–3):205–214, 2012.

    Google Scholar 

  10. Fechete, R., et al. Anisotropy of collagen fiber orientation in sheep tendon by 1H double-quantum-filtered NMR signals. J. Magn. Reson. 162:166–175, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Freund, I., and M. Deutsch. 2Nd-Harmonic microscopy of biological tissue. Opt. Lett. 11(2):94–96, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Geday, M. A. A novel method for quantifying birefringence: analysis of an equine radius bone. In: The Americas Microscopy and Analysis, 2003, p. 17.

  13. Genin, G. M., et al. Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97(4):976–985, 2009.

    Article  PubMed  CAS  Google Scholar 

  14. Gusachenko, I., G. Latour, and M. C. Schanne-Klein. Polarization-resolved second harmonic microscopy in anisotropic thick tissues. Opt. Express 18(18):19339–19352, 2010.

    Article  PubMed  CAS  Google Scholar 

  15. Hecht, E. Optics, 3 ed. New York: Addison Wesley Publishing Company, p. 694, 1997.

  16. Jacques, S. L., J. R. Roman, and K. Lee. Imaging superficial tissues with polarized light. Lasers Surg. Med. 26(2):119–129, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Kim, B.-M., et al. Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity. Lasers Surg. Med. 27:329–335, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, B. M., et al. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J. Biomed. Optics 7(2):205–214, 2002.

    Article  Google Scholar 

  19. Lehninger, A. L., D. L. Nelson, and M. M. Cox. Amino acids and proteins. In: Principles of Biochemistry. New York: Palgrave Macmillan, 2004, p. 1200.

  20. Lin, S. J., et al. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. Opt. Lett. 30(6):622–624, 2005.

    Article  PubMed  Google Scholar 

  21. Maitland, D. J., and J. T. Walsh. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med. 20(3):310–318, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. Masic, A., et al. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized raman spectroscopy. Biomacromolecules 12(11):3989–3996, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Melacini, G., et al. Hydration dynamics of the collagen triple helix by NMR. J. Mol. Biol. 300:1041–1048, 2000.

    Article  PubMed  CAS  Google Scholar 

  24. Mello, M. L. S., et al. Change with age of anisotropic properties of collagen bundles. Gerontology 25(1):2–8, 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Milch, R. A., L. J. Frisco, and E. A. Szymkowiak. Solid-state dielectric properties of aldehyde-treated goatskin collagen. Biorheology 3:9–20, 1965.

    PubMed  CAS  Google Scholar 

  26. Na, G. C. Monomer and oligomer of type I collagen: molecular properties and fibril assembly. Biochemistry 28(18):7161–7167, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Ramshaw, J. A., N. K. Shah, and B. Brodsky. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J. Struct. Biol. 122(1–2):86–91, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Ribeiro, M. S., et al. Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. J. Clin. Laser Med. Surg. 22(1):59–66, 2004.

    Article  PubMed  Google Scholar 

  29. Roth, S., and I. Freund. Second harmonic generation in collagen. J. Chem. Phys. 70(4):1637–1643, 1979.

    Article  CAS  Google Scholar 

  30. Roth, S., and I. Freund. Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon. J. Appl. Cryst. 15:72–78, 1982.

    Article  CAS  Google Scholar 

  31. Salate, A. C. B., et al. Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats. Photomed. Laser Surg. 23(5):470–475, 2005.

    Article  PubMed  Google Scholar 

  32. Sankaran, V. and J. T. Walsh. Birefringence to monitor pathway-dependent collagen denaturation. Lasers Surg. Med. 30(Suppl. 14):8, 2002.

    Google Scholar 

  33. Silva, D. F. T., et al. Collagen birefringence in skin repair in response to red polarized-laser therapy. J. Biomed. Opt. 11(2):024002.1–024002.6, 2006.

    Google Scholar 

  34. Stoller, P., et al. Polarization-modulated second harmonic generation in collagen. Biophys. J. 82(6):3330–3342, 2002.

    Article  PubMed  CAS  Google Scholar 

  35. Theodossiou, T. A., et al. Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections. Biophys. J. 91(12):4665–4677, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Tuchin, V. Optical properties of tissues with strong (multiple) scattering. In: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, edited by V. Tuchin. Bellingham: SPIE Press, 2000, p. 353.

  37. Tuchin, V. V. Fundamentals of the interaction of low-intensity laser radiation with biotissues: dosimetric and diagnostic therapeutics. Bull. Russ. Acad. Soc. 59:1031–1053, 1995.

    Google Scholar 

  38. Verbiest, T., et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282(5390):913–915, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Vidal, B. C. Form birefringence as applied to biopolymer and inorganic material supraorganization. Biotech. Histochem. 85(6):365–378, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. Vidal, B. C., and H. F. Carvalho. Aggregational state and molecular order of tendons as a function of age. Matrix 10:48–57, 1990.

    Article  CAS  Google Scholar 

  41. Vidal, B. C., et al. Anisotropic properties of silver plus gold-impregnated collagen bundles: ADB and form birefringence curves. Ann. Histochim. 20:15–26, 1975.

    PubMed  CAS  Google Scholar 

  42. Walrafen, G. E., and Y.-C. Chu. Nature of collagen-water hydration forces: a problem in water structure. Chem. Phys. 258:427–446, 2000.

    Article  CAS  Google Scholar 

  43. Williams, R. M., W. R. Zipfel, and W. W. Webb. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88(2):1377–1386, 2005.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshioka, K., and C. T. O’Konski. Electric properties of macromolecules. IX. Dipole moment, polarizability, and optical anisotropy factor of collagen in solution from electric birefringence. Biopolymers 4(5):499–507, 1966.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D. F. T. Silva would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarship. Also MSc. Diego José Rátiva Millán, Dr. Renato Evangelista de Araújo and Dr. Silvia Cristina Núñez are gratefully acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Fátima Teixeira Silva.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, D.F.T., Gomes, A.S.L., de Campos Vidal, B. et al. Birefringence and Second Harmonic Generation on Tendon Collagen Following Red Linearly Polarized Laser Irradiation. Ann Biomed Eng 41, 752–762 (2013). https://doi.org/10.1007/s10439-012-0720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0720-3

Keywords

Navigation