Skip to main content

Advertisement

Log in

Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous R−R intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the \(\hbox{RR}\to\hbox{BP}\) feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Barbieri, R., and E. N. Brown. Analysis of heart beat dynamics by point process adaptive filtering. IEEE Trans. Biomed. Eng. 53:4–12, 2006.

    Article  PubMed  Google Scholar 

  2. Barbieri, R., E. C. Matten, A. A. Alabi, and E. N. Brown. A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability. Am J. Physiol. Heart Circ. Physiol. 288:H424–H435, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Barbieri, R., G. Parati, and J. P. Saul. Closed- versus open-loop assessment of heart rate baroreflex. IEEE Eng. Med. Biol. 20: 33–42, 2001.

    Article  CAS  Google Scholar 

  4. Barbieri, R., R. A. Waldmann, V. Di Virgilio, J. K. Triedman, A. M. Bianchi, S. Cerutti, and J. P. Saul. Continuous quantification of baroreflex and respiratory control of heart rate by use of bivarate autoregressive techniques. Ann. Noninvasive Electrocardiol. 3:264–277, 1996.

    Article  Google Scholar 

  5. Baselli, G., S. Cerutti, S. Civardi, A. Malliani, and M. Pagani. Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed. Eng. 35:1033–1046, 1988.

    Article  CAS  PubMed  Google Scholar 

  6. Baselli, G., M. Porta, O. Rimoldi, M. Pagani, and S. Cerutti. Spectral decomposition in multichannel recordings based on multivariate parametric identification. IEEE Trans. Biomed. Eng. 44:1092–1101, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Betzel, J., R. Mukkamala, G. Baselli, and K. H. Chon. Modeling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation. Philos. Trans. R. Soc. A 367:1377–1391, 2009.

    Article  Google Scholar 

  8. Bristow, J. D., C. Prys-Roberts, A. Fisher, T. G. Pickering, and P. Sleight. Effects of anesthesia on baroreflex control of heart rate in man. Anesthesiology 31: 422–428, 1969.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, E. N., R. Barbieri, U. T. Eden, and L. M. Frank. Likelihood methods for neural data analysis. In: Computational Neuroscience: A Comprehensive Approach, edited by J. Feng. Boca Raton, MA: CRC Press, 2003, pp. 253–286.

    Google Scholar 

  10. Carlson, J. T., J. A. Hedner, J. Sellgren, M. Elam, and B. G. Wallin. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 154:1490–1496, 1996.

    CAS  PubMed  Google Scholar 

  11. Carter, J. A., T. N. S. Clarke, C. Prys-Roberts, and K. R. Spelina. Restoration of baroreflex control of heart rate during recovery from anaesthesia. Br. J. Anaesth. 58: 415–421, 1986.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Z., E. N. Brown, and R. Barbieri. A study of probabilistic models for characterizing human heart beat dynamics in autonomic blockade control. In: Proceedings of the IEEE ICASSP, 2008, pp. 481–484.

  13. Chen, Z., E. N. Brown, and R. Barbieri. A point process approach to assess dynamic baroreflex gain. In: Proceedings of the Computers in Cardiology, 2008, pp. 805–808.

  14. Chen, Z., E. N. Brown, and R. Barbieri. A unified point process framework for assessing heartbeat dynamics and cardiovascular control. In: Proceedings of the IEEE 35th Northeast Bioengineering Conference, 2009, pp. 1–2.

  15. Chen, Z., E. N. Brown, and R. Barbieri. Assessment of autonomic control and respiratory sinus arrhythmia using point process models of human heart beat dynamics. IEEE Trans. Biomed. Eng. 56:1791–1802, 2009.

    PubMed  Google Scholar 

  16. Chen, Z., E. N. Brown, and R. Barbieri. Characterizing nonlinear heartbeat dynamics within a point process framework. IEEE Trans. Biomed. Eng. 57:1335–1347, 2010.

    PubMed  Google Scholar 

  17. Chen, Z., P. L. Purdon, E. T. Pierce, G. Harrell, E. N. Brown, and R. Barbieri. Assessment of baroreflex control of heart rate during general anesthesia using a point process method. In: Proceedings of the IEEE ICASSP, 2009, pp. 333–336.

  18. Chon, K. H., T. J. Mullen, and R. J. Cohen. A dual-input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43:530–540, 1995.

    Article  Google Scholar 

  19. Clayton, R. H., A. J. Bowman, and A. Murray. Measurement of baroreflex gain from heart rate and blood pressure spectra. Physiol. Meas. 16:131–139, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. Cullen, P. M., M. Turtle, C. Prys-Roberts, W. L. Way, and J. Dye. Effect of propofol anesthesia on baroreflex activity in humans. Anesth. Analg. 66:115–120, 1987.

    Google Scholar 

  21. De Boer, R. W., J. M. Karemaker, and J. Strackee. Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects: a spectral analysis approach. Med. Biol. Eng. Comput. 23:352–358, 1985.

    Article  CAS  PubMed  Google Scholar 

  22. Eckberg, D. L. Nonlinearities of the human carotid baroreceptor-cardiac reflex. Circ. Res. 47:208–216, 1980.

    CAS  PubMed  Google Scholar 

  23. Eckberg, D. L. Arterial baroreflexes and cardiovascular modeling. Cardiovasc. Eng. 8:5–13, 2008.

    Article  PubMed  Google Scholar 

  24. Eckberg, D. L., S. W. Harkins, J. M. Fritsch, G. E. Musgrave, and D. F. Gardner. Baroreflex control of plasma norepinephrine and heart period in healthy subjects and diabetic patients. J. Clin. Invest. 78:366–374, 1986.

    Article  CAS  PubMed  Google Scholar 

  25. Eden, U. T., L. M. Frank, V. Solo, and E. N. Brown. Dynamic analyses of neural encoding by point process adaptive filtering. Neural Comput. 16:971–998, 2004.

    Article  PubMed  Google Scholar 

  26. Faes, L., G. Nollo, and K. H. Chon. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann. Biomed. Eng. 36:381–395, 2007.

    Article  Google Scholar 

  27. Faes, L., A. Porta, R. Cucino, S. Cerutti, R. Antolini, and G. Nollo. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals. Biol. Cybern. 90:390–399, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Feld, J., W. Hoffman, C. Paisansathan, H. Park, and R. C. Ananda. Autonomic activity during dexmedetomidine or fentanyl infusion with desflurane anesthesia. J. Clin. Anesth. 19:30–36, 2003.

    Article  Google Scholar 

  29. Fietze, I., D. Romberg, M. Glos, S. Endres, H. Theres, C. Witt, and V. K. Somers. Effects of positive-pressure ventilation on the spontaneous baroreflex in healthy subjects. J. Appl. Physiol. 96:1155–1160, 2004.

    Article  PubMed  Google Scholar 

  30. Haykin, S. Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

    Google Scholar 

  31. Hughson, R. L., L. Quintin, G. Annat, Y. Yamamoto, and C. Gharib. Spontaneous baroreflex by sequence and power spectral methods in humans. Clin. Physiol. 13:663–676, 1993.

    Article  CAS  PubMed  Google Scholar 

  32. Jo, J. A., A. Blasi, E. M. Valladares, R. Juarez, A. Baydur, and M. C. K. Khoo. A nonlinear model of cardiac autonomic control in obstructive sleep apnea syndrome. Ann. Biomed. Eng. 35:1425–1443, 2007.

    Article  PubMed  Google Scholar 

  33. Lu, S., K. H. Ju, and K. H. Chon. A new algorithm for linear and nonlinear ARMA model parameter estimation using afne geometry. IEEE Trans. Biomed. Eng. 48(10):1116–1124, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Mainardi, L. T. On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods. Philos. Trans. R. Soc. A 367:255–275, 2009.

    Article  Google Scholar 

  35. Mainardi, L. T., A. M. Bianchi, R. Furlan, S. Piazza, R. Barbieri, V. de Virgilio, A. Malliani, and S. Cerutti. Multivariate time-variant identification of cardiovascular variability signals: a beat-to-beat spectral parameter estimation in vasovagal syncope. IEEE Trans. Biomed. Eng. 44(10):978–988, 1997.

    Article  CAS  PubMed  Google Scholar 

  36. Marmarelis, V. Z. Nonlinear Dynamic Modeling of Physiological Systems. New York: Wiley, 2004.

    Google Scholar 

  37. Nagasaki, G., M. Tanaka, and T. Nishikawa. The recovery profile of baroreflex control of heart rate after isoflurane or sevoflurane anesthesia in humans. Anesth. Analg. 93:1127–1131, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Nikias, C., and A. P. Petropulu. Higher Order Spectra Analysis: A Non-Linear Signal Processing Framework. Upper Saddle River, NJ: Prentice Hall, 1993.

    Google Scholar 

  39. Nollo, G., A. Porta, L. Faes, M. Del Greco, M. Disertori, and F. Ravelli. Causal linear parametric model for baroreflex gain assessment in patients with recent myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 280:H1830–H1839, 2001.

    CAS  PubMed  Google Scholar 

  40. Parati, G., M. DiRienzo, and G. Mancia. Dynamic modulation of baroreflex sensitivity in health and disease. Ann. N. Y. Acad. Sci. 940:469–487, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Peden, C. J., A. H. Cloote, N. Stratford, and C. Prys-Roberts. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia 56:408–413, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Peng, C.-K., S. Havlin, H. E. Stanley, and A. L., Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995.

    Article  CAS  PubMed  Google Scholar 

  43. Pinna, G. D. Assessing baroreflex sensitivity by the transfer function method: what are we really measuring? J. Appl. Physiol. 102:1310–1311, 2007.

    Article  PubMed  Google Scholar 

  44. Pinna, G. D., and R. Maestri. New criteria for estimating baroreflex sensitivity using the transfer function method. J. Med. Biol. Eng. Comput. 40:79–84, 2001.

    Article  Google Scholar 

  45. Poon, C.-S., and C. K. Merrill. Decrease of cardiac chaos in congestive heart failure. Nature 389:492–495, 1997.

    Article  CAS  PubMed  Google Scholar 

  46. Porta, A., F. Aletti, F. Vallais, and G. Baselli. Multimodal signal processing for the analysis of cardiovascular variability. Philos. Trans. R. Soc. A 367:391-409, 2009.

    Article  Google Scholar 

  47. Porta, A., R. Furlan, O. Rimoldi, M. Pagani, A. Malliani, and P. van de Borne. Quantifying the strength of linear causal coupling in closed loop interacting cardiovascular variability signals. Biol. Cybern. 86:241–251, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Purdon, P. L., E. T. Pierce, G. Bonmassar, J. Walsh, G. Harrell, J. Kwo, D. Deschler, M. Barlow, R. C. Merhar, C. Lamus, C. M. Mullaly, M. Sullivan, S. Maginnis, D. Skoniecki, H. Higgins, and E. N. Brown. Simultaneous electroencephalography and functional magnetic resonance imaging of general anesthesia. Ann. N. Y. Acad. Sci. 1157:61–70, 2009.

    Article  CAS  PubMed  Google Scholar 

  49. Sato, M., M. Tanaka, S. Umehara, and T. Nishikawa. Baroreflex control of heart rate during and after propofol infusion in humans. Br. J. Anaesth. 94:577–581, 2005.

    Article  CAS  PubMed  Google Scholar 

  50. Saul, J. P., R. D. Berger, P. Albrecht, S. P. Stein, M. H. Chen, and R. J. Cohen. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am. J. Physiol. Heart. Circ. Physiol. 261:H1231–H1245, 1991.

    CAS  Google Scholar 

  51. Schetzen, M. The Volterra and Wiener Theories of Nonlinear Systems. New York: Wiley, 1980.

    Google Scholar 

  52. Schnider, T. W., C. F. Minto, P. L. Gambus, C. Andresen, D. B. Goodale, S. L. Shafer, and E. J. Youngs. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182,1998.

    Article  CAS  PubMed  Google Scholar 

  53. Schnider, T. W., C. F. Minto, S. L. Shafer, P. L. Gambus, C. Andresen, D. B. Goodale, and E. J. Youngs. The influence of age on propofol pharmacodynamics. Anesthesiology 89:67–72, 1999.

    Google Scholar 

  54. Sellgren, J., H. Ejnell, M. Elam, J. Pontén, and B. G. Wallin. Sympathetic muscle nerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery. Anesthesiology 80:534–544, 1994.

    Article  CAS  PubMed  Google Scholar 

  55. Shafer, A., V. A. Doze, S. L. Shafer, and P. F. White. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 69:348–356, 1988.

    Article  CAS  PubMed  Google Scholar 

  56. Tanaka, M., G. Nagaski, and T. Nishikawa. Moderate hypothermia depresses arterial baroreflex control of heart rate during, and delays it recovery after, general anesthesia in humans. Anesthesiology 95:51–55, 2001.

    Article  CAS  PubMed  Google Scholar 

  57. Tanaka, M., and T. Nishikawa. The concentration-dependent effects of general anesthesia on spontaneous baroreflex indices and their correlations with pharmacological gains. Anesth. Analg. 100:1325–1332, 2005.

    Article  CAS  PubMed  Google Scholar 

  58. Tsoulkas, V., P. Koukoulas, and N. Kalouptsidis. Identification of input output bilinear systems using cumulants. IEEE Trans. Signal Process. 49:2753–2761, 2001.

    Article  Google Scholar 

  59. Xiao, X., T. J. Mullen, and R. Mukkamala. System identication: a multi-signal approach for probing neural cardiovascular regulation. Physiol. Meas. 26:R41–R71, 2005.

    Article  PubMed  Google Scholar 

  60. Wang, H., K. Ju, and K. H. Chon. Closed-loop nonlinear system identification via the vector optimal parameter search algorithm: application to heart rate baroreflex control. Med. Eng. Phys. 29:505–515, 2007.

    Article  PubMed  Google Scholar 

  61. Zhao, H., W. A. Cupples, K. Ju, and K. H. Chon. Time-varying causal coherence function and its application to renal blood pressure and blood flow data. IEEE Trans. Biomed. Eng. 54:2142–2150, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, H., S. Lu, R. Zou, K. Ju, and K. H. Chon. Estimation of time-varying coherence function using time-varying transfer functions. Ann. Biomed. Eng. 33:1582–1594, 2005.

    Article  PubMed  Google Scholar 

  63. Zou, R., H. Wang, and K. H. Chon. A robust time-varying identification algorithm using basis functions. Ann. Biomed. Eng. 31:840–853, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH Grants R01-HL084502 (R.B.), K25-NS05758 (P.L.P.), DP2-OD006454 (P.L.P.), T32NS048005 (G.H.), DP1-OD003646 (E.N.B.), and R01-DA015644 (E.N.B.), as well as a CRC UL1 Grant RR025758 (P.L.P.). The authors thank L. Citi, K. Habeeb, R. Merhar, A. Salazar, and C. Tavares for assistance in collecting and preprocessing the data used in our experiments. We also thank the valuable comments from three reviewers that help to improve the manuscript. Preliminary results of this study have been reported in Proceedings of IEEE ICASSP’09, Taiwan.17

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Appendix

Appendix

For clarity of proof of Eq. (11), we assume that inputs u(t) and x(t) are both stationary and have zero means (in our case, we only model the “de-meaned” RR and BP signals with {a i } and {b j }). The line of logic is similar to the one that was presented in the literature,38 which only considered a univariate input. We first decompose the output y(t) into three (two linear and one bilinear) terms

$$ y(t)=\sum_i a_i x(t-i) +\sum_j b_j u(t-j) +\sum_k\sum_l h_{kl} x(t-k) u(t-l). $$

From the assumption that \({\mathbb{E}}[x(t)]=0\) and \({\mathbb{E}}[u(t)]=0,\) it further follows that

$$ \begin{aligned} {\mathbb{E}}[y(t)]=&\sum_k\sum_l h_{kl} {\mathbb{E}}[x(t-k) u(t-l)] \\ =& \sum_k\sum_l h_{kl}C_{xu}(l-k)\\ =& {\frac{1}{(2\pi)^3}} \sum_k\sum_l \int \int {\mathcal{H}}(f_1,f_2)e^{j2 k \pi f_1}e^{j2 l \pi f_2} df_1df_2 \int {\mathcal{C}}_{xu}(f) e^{j2 (l-k) \pi f } df \\ =& {\frac{1}{2\pi}}\int {\mathcal{H}}(f,-f) {\mathcal{C}}_{xu} (f)df,\\ \end{aligned} $$
(A.1)

where the expectation operation is averaged on the argument over time.

Next, we compute the cross third-order cumulant statistic between x(t) and y(t) (viz. cross bicovariance):

$$ \begin{aligned} C_{xxy}(\tau_1,\tau_2)=&{\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2)[y(t)- {\mathbb{E}}\{y(t)\}]\}\\ =& {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2)y(t)\} -{\mathbb{E}}\{y(t)\} {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2)\}\\ =& \sum_{j}b_j {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2) u(t- j) \} \\ &+\sum_k\sum_l h_{kl} {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2)x(t-k) u(t-l) \} -{\mathbb{E}}\{y(t)\} C_{xx}(\tau_1-\tau_2)\\ \end{aligned} $$

where we have used the fact that if x(t) is zero-mean Gaussian, then the third cumulant statistic C xxx 1, τ2) is zero, such that \(\sum_i a_i {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2) x(t- i) \}=0.\) Furthermore, if u(t) and x(t) are zero-mean jointly Gaussian distributed, and the odd-moment statistic \(C_{xxu}(\tau_1,\tau_2)\approx 0\) (because of the symmetry of Gaussian distribution), then the following relationship holds38,51:

$$ {\mathbb{E}}[x_1x_2x_3 u_4]= {\mathbb{E}}[x_1x_2]{\mathbb{E}}[x_3u_4]+ {\mathbb{E}}[x_1x_3]{\mathbb{E}}[x_2u_4]+ {\mathbb{E}}[x_2x_3]{\mathbb{E}}[x_1u_4], $$
(A.2)

and

$$ C_{xxy}(\tau_1,\tau_2)= \sum_k\sum_l h_{kl} \left\{ {\mathbb{E}}\{x(t+\tau_1)x(t+\tau_2)x(t-k) u(t-l) \} - C_{xu}(l-k) C_{xx}(\tau_1-\tau_2) \right\}. $$
(A.3)

In light of Eqs. (A.2) and (A.3), we obtain

$$ \begin{aligned} C_{xxy}(\tau_1,\tau_2)=& 2 \sum_k\sum_l h(k-\tau_1, l-\tau_2) C_{xx}(k) C_{xu}(l)\\ =& {\frac{2}{(2\pi)^2}} \int\int {\mathcal{H}}(-f_1,-f_2) e^{j2\pi \tau_1 f_1} e^{j2\pi \tau_2 f_2} {\mathcal{Q}}_{\rm RR}(f_1){\mathcal{C}}_{xu}(f_2) df_1 df_2\\ \end{aligned} $$

Finally, we compute the two-dimensional Fourier transform of C xxy 1, τ2) to obtain the cross bispectrum \({\mathcal{C}}_{xxy} (f_1,f_2):\)

$$ \begin{aligned} {\mathcal{C}}_{xxy} (f_1,f_2) =& \int C_{xxy}(\tau_1,\tau_2) e^{-j2\pi \tau_1 f_1} e^{-j2\pi \tau_2 f_2} d\tau_1 d\tau_2\\ =& 2{\mathcal{H}}(-f_1,-f_2) {\mathcal{Q}}_{\rm RR}(f_1) {\mathcal{C}}_{xu}(f_2),\\ \end{aligned} $$
(A.4)

which then completes the proof of Eq. (11).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Purdon, P.L., Harrell, G. et al. Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method. Ann Biomed Eng 39, 260–276 (2011). https://doi.org/10.1007/s10439-010-0179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0179-z

Keywords

Navigation