Skip to main content

Advertisement

Log in

Assessment of Granger Causality by Nonlinear Model Identification: Application to Short-term Cardiovascular Variability

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A method for assessing Granger causal relationships in bivariate time series, based on nonlinear autoregressive (NAR) and nonlinear autoregressive exogenous (NARX) models is presented. The method evaluates bilateral interactions between two time series by quantifying the predictability improvement (PI) of the output time series when the dynamics associated with the input time series are included, i.e., moving from NAR to NARX prediction. The NARX model identification was performed by the optimal parameter search (OPS) algorithm, and its results were compared to the least-squares method to determine the most appropriate method to be used for experimental data. The statistical significance of the PI was assessed using a surrogate data technique. The proposed method was tested with simulation examples involving short realizations of linear stochastic processes and nonlinear deterministic signals in which either unidirectional or bidirectional coupling and varying strengths of interactions were imposed. It was found that the OPS-based NARX model was accurate and sensitive in detecting imposed Granger causality conditions. In addition, the OPS-based NARX model was more accurate than the least squares method. Application to the systolic blood pressure and heart rate variability signals demonstrated the feasibility of the method. In particular, we found a bilateral causal relationship between the two signals as evidenced by the significant reduction in the PI values with the NARX model prediction compared to the NAR model prediction, which was also confirmed by the surrogate data analysis. Furthermore, we found significant reduction in the complexity of the dynamics of the two causal pathways of the two signals as the body position was changed from the supine to upright. The proposed is a general method, thus, it can be applied to a wide variety of physiological signals to better understand causality and coupling that may be different between normal and diseased conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19:716–723, 1974

    Article  Google Scholar 

  2. Ancona N., D. Marinazzo, S. Stramaglia. Radial basis function approach to nonlinear Granger causality of time series. Phys. Rev. E 70:056221, 2004

    Article  Google Scholar 

  3. Baselli G., S. Cerutti, M. Livraghi, C. Meneghini, M. Pagani, O. Rimoldi. Causal relationship between heart rate and arterial blood pressure variability signals. Med. Biol. Eng. Comput. 26:374–378, 1988

    Article  PubMed  CAS  Google Scholar 

  4. Bhattacharya J., E. Pereda, H. Petsche. Effective detection of coupling in short and noisy bivariate data. IEEE Trans. Syst. Man Cyb. Part B: Cyb. 33:85–95, 2003

    Article  CAS  Google Scholar 

  5. Chen Y., G. Rangarajan, J. Feng, M. Ding. Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 324:26–35, 2004

    Article  CAS  Google Scholar 

  6. Chon K. H., T. J. Mullen, R. J. Cohen. A dual-input nonlinear system analysis of autonomic modulation of heart rate. IEEE Trans. Biomed. Eng. 43:530–544, 1996

    Article  PubMed  CAS  Google Scholar 

  7. Faes L., R. Cucino, G. Nollo. Evaluation of a nonlinear prediction algorithm quantifying regularity, synchronization and directionality in short cardiovascular variability series. Comp. Cardiol. 33:177–180, 2006

    Google Scholar 

  8. Faes L., A. Porta, R. Cucino, S. Cerutti, R. Antolini, G. Nollo. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals. Biol. Cybern. 90:390–399, 2004

    Article  PubMed  CAS  Google Scholar 

  9. Faes L., L. Widesott, M. Del Greco, R. Antolini, G. Nollo. Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope. IEEE Trans. Biomed. Eng. 53:65–73, 2006

    Article  PubMed  Google Scholar 

  10. Feldmann U., J. Bhattacharya. Predictability improvement as an asymmetrical measure of interdependence in bivariate time series. Int. J. Bifurc. Chaos. 14:505–514, 2004

    Article  Google Scholar 

  11. Granger C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438, 1969

    Article  Google Scholar 

  12. Hlavackova-Schindler K., M. Palus, M. Vejmelka, J. Bhattacharya. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441:1–46, 2007

    Article  Google Scholar 

  13. Koepchen H. P. Physiology of rhythms and control systems: an integrative approach. In: Haken H., Koepchen H. P., eds Rhythms in Physiological Systems. Berlin, Germany: Springer Verlag, 1991:3–20

    Google Scholar 

  14. Korenberg M. J. A robust orthogonal algorithm for system identification and time-series analysis. Biol. Cybern. 60:267–276, 1989

    Article  PubMed  CAS  Google Scholar 

  15. Le Van Quyen M., J. Martinerie, C. Adam, F. J. Varela. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy. Physica D 127:250–266, 1999

    Article  Google Scholar 

  16. Lu S., K. H. Ju, K. H. Chon. A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry. IEEE Trans. Biomed. Eng. 48:1116–1124, 2001

    Article  PubMed  CAS  Google Scholar 

  17. Malliani A. Principles of Cardiovascular Neural Regulation in Health and Disease. Norwell, MA, USA: Kluwer academic publishers, 2000

    Google Scholar 

  18. Malpas S. C. Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circ. Physiol. 282:H6–20, 2002

    PubMed  CAS  Google Scholar 

  19. Marinazzo D., M. Pellicoro, S. Stramaglia. Nonlinear parametric model for Granger causality of time series. Phys. Rev. E 73:066216, 2006

    Article  Google Scholar 

  20. Mokhov I. I., D. A. Smirnov. El Nino-Southern Oscillation drives North Atlantic Oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett. 33:L03708, 2006

    Article  Google Scholar 

  21. Montano N., T. Gnecchi Ruscone, A. Porta, F. Lombardi, M. Pagani, A. Malliani. Power spectrum analysis of heart rate variability to assess the change in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831, 1994

    PubMed  CAS  Google Scholar 

  22. Nollo G., L. Faes, A. Porta, R. Antolini, F. Ravelli. Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans. Implications in baroreflex gain evaluation. Am. J. Physiol. Heart Circ. Physiol. 288:H1777–H1785, 2005

    Article  PubMed  CAS  Google Scholar 

  23. Nollo G., L. Faes, A. Porta, B. Pellegrini, F. Ravelli, M. Del Greco, M. Disertori, R. Antolini. Evidence of unbalanced regulatory mechanism of heart rate and systolic pressure after acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 283:H1200–H1207, 2002

    PubMed  CAS  Google Scholar 

  24. Pagani M., F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell’Orto, E. Piccaluga, M. Turiel, G. Baselli, S. Cerutti, A. Malliani. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 59:178–193, 1986

    PubMed  CAS  Google Scholar 

  25. Pereda E., D. M. de La Cruz, L. De Vera, J. J. Gonzalez. Comparing generalized and phase synchronization in cardiovascular and cardiorespiratory signals. IEEE Trans. Biomed. Eng. 52:578–583, 2005

    Article  PubMed  Google Scholar 

  26. Pereda E., R. Q. Quiroga, J. Bhattacharya. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77:1–37, 2005

    Article  PubMed  Google Scholar 

  27. Porta A., G. Baselli, S. Guzzetti, M. Pagani, A. Malliani, S. Cerutti. Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans. Biomed. Eng. 47:1555–1564, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Porta A., R. Furlan, O. Rimoldi, M. Pagani, A. Malliani, P. van de Borne. Quantifying the strength of the linear causal coupling in closed loop interacting cardiovascular variability signals. Biol. Cybern. 86:241–251, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Porta A., S. Guzzetti, N. Montano, M. Pagani, V. Somers, A. Malliani, G. Baselli, S. Cerutti. Information domain analysis of cardiovascular variability signals: evaluation of regularity, synchronisation and co-ordination. Med. Biol. Eng. Comput. 38:180–188, 2000

    Article  PubMed  CAS  Google Scholar 

  30. Quiroga R. Q., J. Arnhold, P. Grassberger. Learning driver-response relationships from synchronization patterns. Phys. Rev. E 61:5142–5148, 2000

    Article  CAS  Google Scholar 

  31. Rissanen J. An universal prior for the integers and estimation by minimum description length. Ann. Stat. 11:417–431, 1983

    Article  Google Scholar 

  32. Rosenblum M. G., L. Cimponeriu, A. Bezerianos, A. Patzak, R. Mrowka. Identification of coupling direction: application to cardiorespiratory interaction. Phys. Rev. E 65:041909, 2002

    Article  Google Scholar 

  33. Rosenblum M. G., A. S. Pikovsky. Detecting direction of coupling in interacting oscillators. Phys. Rev. E 64:045202, 2001

    Article  CAS  Google Scholar 

  34. Schiff S. J., P. So, T. Chang, R. E. Burke, T. Sauer. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 54:6708–6724, 1996

    Article  CAS  Google Scholar 

  35. Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000:461–464, 2000

    Article  Google Scholar 

  36. Schreiber T., A. Schmitz. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77:635–638, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Faes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faes, L., Nollo, G. & Chon, K.H. Assessment of Granger Causality by Nonlinear Model Identification: Application to Short-term Cardiovascular Variability. Ann Biomed Eng 36, 381–395 (2008). https://doi.org/10.1007/s10439-008-9441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9441-z

Keywords

Navigation