Skip to main content
Log in

Prediction of Extravascular Burden of Carbon Monoxide (CO) in the Human Heart

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clinically significant myocardial abnormalities (e.g., arrhythmias, S-T elevation) occur in patients with mild-to-severe carbon monoxide (CO) poisoning. We enhanced our previous whole body model [Bruce, E. N., M. C. Bruce, and K. Erupaka. Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues. Respir. Physiol. Neurobiol. 161(2):142–159, 2008] by adding a cardiac compartment (containing three vascular and two tissue subcompartments differing in capillary density) to predict myocardial carboxymyoglobin (MbCO) and oxygen tensions (PcO2) for several CO exposure regimens at rest and during exercise. Model predictions were validated with experimental data in normoxia, hypoxia, and hyperoxia. We simulated exposure at rest to 6462 ppm CO (10 min) and to 265 ppm CO (480 min), and during three levels of exercise at 20% HbCO. We compared responses of carboxyhemoglobin (HbCO), MbCO and PcO2 to estimate the potential for myocardial injury due to CO hypoxia. Simulation results predict that during CO exposures and subsequent therapies, cardiac tissue has higher MbCO levels and lower PcO2’s than skeletal muscle. CO exposure during exercise further decreases PcO2 from resting levels. We conclude that in rest and moderate exercise, the myocardium is at greater risk for hypoxic injury than skeletal muscle during the course of CO exposure and washout. Because the model can predict CO uptake and distribution in human myocardium, it could be a tool to estimate the potential for hypoxic myocardial injury and facilitate therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Agata, H., T. Ichinohe, and Y. Kaneko. Felypressin-induced reduction in coronary blood flow and myocardial tissue oxygen tension during anesthesia in dogs. Can. J. Anaesth. 46(11):1070–1075, 1999.

    Article  PubMed  Google Scholar 

  2. Anderson, R. F., D. C. Allensworth, and W. J. DeGroot. Myocardial toxicity from carbon monoxide poisoning. Ann. Intern. Med. 67(6):1172–1182, 1967.

    PubMed  Google Scholar 

  3. Astrand, P. O., T. E. Cuddy, B. Saltin, and J. Stenberg. Cardiac output during submaximal and maximal work. J. Appl. Physiol. 19:268–274, 1964.

    PubMed  Google Scholar 

  4. Barker, R. C., S. R. Hopkins, N. Kellogg, I. M. Olfert, T. D. Brutsaert, T. P. Gavin, P. L. Entin, A. J. Rice, and P. D. Wagner. Measurement of cardiac output during exercise by open-circuit acetylene uptake. J. Appl. Physiol. 87(4):1506–1512, 1999.

    PubMed  Google Scholar 

  5. Beard, D. A., and J. B. Bassingthwaighte. Advection and diffusion of substances in biological tissues with complex vascular networks. Ann. Biomed. Eng. 28:253–268, 2000.

    Article  PubMed  Google Scholar 

  6. Beck, K. C., L. N. Randolph, K. R. Bailey, C. M. Wood, E. M. Snyder, and B. D. Johnson. Relationship between cardiac output and oxygen consumption during upright cycle exercise in healthy humans. J. Appl. Physiol. 101(5):1474–1480, 2006.

    Article  PubMed  Google Scholar 

  7. Benignus, V. A., M. J. Hazucha, M. V. Smith, and P. A. Bromberg. Prediction of carboxyhemoglobin formation due to transient exposure to carbon monoxide. J. Appl. Physiol. 76(4):1739–1745, 1994.

    PubMed  Google Scholar 

  8. Bruce, E. N., M. C. Bruce, and K. Erupaka. Prediction of the rate of uptake of carbon monoxide from blood by extravascular tissues. Respir. Physiol. Neurobiol. 161(2):142–159, 2008.

    Article  PubMed  Google Scholar 

  9. Bruce, E. N., and M. C. Bruce. A multicompartment model of carboxyhemoglobin and carboxymyoglobin responses to inhalation of carbon monoxide. J. Appl. Physiol. 95(3):1235–1247, 2003.

    PubMed  Google Scholar 

  10. Bruce, M. C., and E. N. Bruce. Analysis of factors that influence rates of carbon monoxide uptake, distribution, and washout from blood and extravascular tissues using a multicompartment model. J. Appl. Physiol. 100(4):1171–1180, 2006.

    Article  PubMed  Google Scholar 

  11. Burge, C. M., and S. L. Skinner. Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J. Appl. Physiol. 79(2):623–631, 1995.

    PubMed  Google Scholar 

  12. Caldwell, J. H., G. V. Martin, G. M. Raymond, and J. B. Bassingthwaighte. Regional myocardial flow and capillary permeability surface area products are nearly proportional. Am. J. Physiol. 267:H654–H666, 1994.

    PubMed  Google Scholar 

  13. Cerretelli, P., and M. Samaja. Acid–base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur. J. Appl. Physiol. 90(5–6):431–448, 2003.

    Article  PubMed  Google Scholar 

  14. Chiodi, H., D. B. Dill, F. Consolazio, and S. M. Horvath. Respiratory and circulatory responses to acute carbon monoxide poisoning. Am. J. Physiol. 134:H683–H693, 1941.

    Google Scholar 

  15. Choi, I. S. Delayed neurologic sequelae in carbon monoxide intoxication. Arch. Neurol. 40:433–435, 1983.

    PubMed  Google Scholar 

  16. Chung, Y., S. J. Huang, A. Glabe, and T. Jue. Implication of CO inactivation on myoglobin function. Am. J. Physiol. Cell. Physiol. 290(6):C1616–C1624, 2006.

    Article  PubMed  Google Scholar 

  17. Cosby, R., and M. Bergeron. Electrocardiographic changes in carbon monoxide. Am. J. Cardiol. 11:93–96, 1963.

    Article  PubMed  Google Scholar 

  18. Crisafulli, A., F. Melis, F. Tocco, U. M. Santoboni, F. Frongia, C. Carta, M. Caddeo, and A. Concu. Anaerobic threshold and the oxygen consumption–cardiac output relationship during exercise. Sport Sci. Health 2:75–80, 2005.

    Article  Google Scholar 

  19. Dash, R. K., and J. B. Bassingthwaighte. Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels. Ann. Biomed. Eng. 32(12):1676–1693, 2004.

    Article  PubMed  Google Scholar 

  20. Edlund, A., and A. Sollevi. Theophylline increases coronary vascular tone in humans: evidence for a role of endogenous adenosine in flow regulation. Acta. Physiol. Scand. 155(3):303–311, 1995.

    Article  PubMed  Google Scholar 

  21. Ekblom, B., P. O. Astrand, B. Saltin, J. Stenberg, and B. Wallstorm. Effect of training on circulatory response to exercise. J. Appl. Physiol. 24(4):512–528, 1968.

    Google Scholar 

  22. Endo, M., T. Hino, T. Itaoka, H. Hayashi, and J. Wada. Continuous measurement of human myocardial tissue oxygen tension. Kokyu To Junkan 26(9):881–887, 1978.

    PubMed  Google Scholar 

  23. Faithfull, S., M. Fennema, W. Erdmann, M. Dhasmana, and G. Eilers. The effects of acute ischaemia on intramyocardial oxygen tensions. Adv. Exp. Med. Biol. 200:339–348, 1986.

    PubMed  Google Scholar 

  24. Fitts, R. H. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74(1):49–94, 1994.

    PubMed  Google Scholar 

  25. Gandini, C., A. F. Castoldi, S. M. Candura, S. Priori, C. Locatelli, R. Butera, C. Bellet, and L. Manzo. Cardiac damage in pediatric carbon monoxide poisoning. J. Toxicol. Clin. Toxicol. 39(1):45–51, 2001.

    Article  PubMed  Google Scholar 

  26. Gandini, C., A. F. Castoldi, S. M. Candura, C. Locatelli, R. Butera, S. Priori, and L. Manzo. Carbon monoxide cardiotoxicity. J. Toxicol. Clin. Toxicol. 39(1):35–44, 2001.

    Article  PubMed  Google Scholar 

  27. Gayeski, T. E., and C. R. Honig. Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am. J. Physiol. Heart. Circ. Physiol. 260:522–531, 1991.

    Google Scholar 

  28. Giardina, B., P. Ascenzi, M. E. Clementi, G. De Sanctis, M. Rizzi, and M. Coletta. Functional modulation by lactate of myoglobin. A monomeric allosteric hemoprotein. J. Biol. Chem. 271(29):16999–17001, 1996.

    Article  PubMed  Google Scholar 

  29. Gonschior, P., G. M. Gonschior, P. F. Conzen, J. Hobbhahn, A. E. Goetz, K. Peter, and W. Brendel. Myocardial oxygenation and transmural lactate metabolism during experimental acute coronary stenosis in pigs. Basic Res. Cardiol. 87(1):27–37, 1992.

    Article  PubMed  Google Scholar 

  30. Goodale, W. T., and D. B. Hackel. Measurement of coronary blood flow in dogs and man from rate of myocardial nitrous oxide desaturation. Circ. Res. 1(6):502–508, 1953.

    PubMed  Google Scholar 

  31. Grunewald, W. A., and W. Sowa. Distribution of the myocardial tissue PO2 in the rat and the inhomogenity of the coronary bed. Pflugers Arch. 374:57–66, 1978.

    Article  PubMed  Google Scholar 

  32. Gu, J. W., M. Shparago, W. Tan, and A. P. Bailey. Tissue endostatin correlates inversely with capillary network in rat heart and skeletal muscles. Angiogenesis 9(2):93–99, 2006.

    Article  PubMed  Google Scholar 

  33. Habazettl, H., P. F. Conzen, H. Baier, M. Christ, B. Vollmar, A. Goetz, K. Peter, and W. Brendel. Epicardial oxygen tensions during changes in arterial PO2 in pigs. Adv. Exp. Med. Biol. 277:437–447, 1990.

    PubMed  Google Scholar 

  34. Harms, C. A., T. J. Wetter, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, P. Hanson, and J. A. Dempsey. Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J. Appl. Physiol. 85:609–618, 1998.

    PubMed  Google Scholar 

  35. Heineman, F. W., and R. S. Balaban. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo. J. Clin. Invest. 85(3):843–852, 1990.

    Article  PubMed  Google Scholar 

  36. Henry, C. R., D. Satran, B. Lindgren, C. Adkinson, C. I. Nicholson, and T. D. Henry. Myocardial injury and long-term mortality following moderate to severe carbon monoxide poisoning. JAMA 295:398–402, 2006.

    Article  PubMed  Google Scholar 

  37. Hermansen, L., B. Ekblom, and B. Saltin. Cardiac output during submaximal and maximal treadmill and bicycle exercise. J. Appl. Physiol. 29(1):82–86, 1970.

    PubMed  Google Scholar 

  38. Hobbhahn, J., P. F. Conzen, A. Goetz, G. Seidl, P. Gonschior, W. Brendel, and K. Peter. Myocardial surface PO2—an indicator of myocardial tissue oxygenation? Cardiovasc. Res. 23(6):529–540, 1989.

    Article  PubMed  Google Scholar 

  39. Hoffman, W. E., R. F. Albrecht, and Z. S. Jonjev. Myocardial tissue oxygen during coronary artery constriction and hypotension in dogs. Acta Anaesthesiol. Scand. 46(6):707–712, 2002.

    Article  PubMed  Google Scholar 

  40. Horstick, G., A. Heimann, O. Gotze, G. Hafner, O. Berg, P. Boehmer, P. Becker, H. Darius, H. J. Rupprecht, M. Loos, S. Bhakdi, J. Meyer, and O. Kempski. Intracoronary application of C1 esterase inhibitor improves cardiac function and reduces myocardial necrosis in an experimental model of ischemia and reperfusion. Circulation 95(3):701–708, 1997.

    PubMed  Google Scholar 

  41. Jafri, M. S., S. J. Dudycha, and B. O’Rourke. Cardiac energy metabolism: models of cellular respiration. Annu. Rev. Biomed. Eng. 3:57–81, 2001.

    Article  PubMed  Google Scholar 

  42. Joost, C. J. M., J. Petra, J. L. Mike, and T. H. M. Anton. The content and distribution of troponin I, troponin T, myoglobin, and alpha-hydroxybutyric acid dehydrogenase in the human heart. Am. J. Clin. Pathol. 115:770–777, 2001.

    Article  Google Scholar 

  43. Jorgensen, C. R., K. Wang, Y. Wang, F. L. Gobel, R. R. Nelson, and H. Taylor. Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48(6):1173–1182, 1973.

    PubMed  Google Scholar 

  44. Jorgensen, C. R., K. Kitamura, F. L. Gobel, H. L. Taylor, and Y. Wang. Long-term precision of the N2O method for coronary flow during heavy upright exercise. J. Appl. Physiol. 30(3):338–344, 1971.

    PubMed  Google Scholar 

  45. Juel, C. Regulation of pH in human skeletal muscle: adaptations to physical activity. Acta Physiol. (Oxf) 193(1):17–24, 2008.

    Article  Google Scholar 

  46. Juel, C., M. K. Holten, and F. Dela. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. J. Physiol. 556(Pt 1):297–304, 2004.

    PubMed  Google Scholar 

  47. Kalay, N., I. Ozdogru, Y. Cetinkaya, N. K. Eryol, A. Dogan, I. Gul, T. Inanc, I. Ikizceli, A. Oguzhan, and A. Abaci. Cardiovascular effects of carbon monoxide poisoning. Am. J. Cardiol. 99(3):322–324, 2007.

    Article  PubMed  Google Scholar 

  48. Kassab, G. S., D. H. Lin, and Y. C. Fung. Morphometry of pig coronary venous system. Am. J. Physiol. 267:2100–2113, 1994.

    Google Scholar 

  49. Kitamura, K., C. R. Jorgensen, F. L. Gobel, H. L. Taylor, and Y. Wang. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32(4):516–522, 1972.

    PubMed  Google Scholar 

  50. Kizakevich, P. N., M. L. McCartney, M. J. Hazucha, and L. H. Sleet. Noninvasive ambulatory assessment of cardiac function and myocardial ischemia in healthy subjects exposed to carbon monoxide during upper and lower body exercise. Eur. J. Appl. Physiol. 83:7–16, 2000.

    Article  PubMed  Google Scholar 

  51. Koike, A., K. Wasserman, Y. Armon, and D. Weiler-Ravell. The work-rate-dependent effect of carbon monoxide on ventilatory control during exercise. Respir. Physiol. 85(2):169–183, 1991.

    Article  PubMed  Google Scholar 

  52. Korzeniewski, B. Oxygen consumption and metabolite concentrations during transitions between different work intensities in heart. Am. J. Physiol. Heart Circ. Physiol. 291(3):H1466–H1474, 2006.

    Article  PubMed  Google Scholar 

  53. Koskela, R. S. Cardiovascular diseases among foundry workers exposed to carbon monoxide. Scand. J. Work. Environ. Health. 20:286–293, 1994.

    PubMed  Google Scholar 

  54. Laaksonen, M. S., K. K. Kalliokoski, M. Luotolahti, J. Kemppainen, M. Teras, H. Kyrolainen, P. Nuutila, and J. Knuuti. Myocardial perfusion during exercise in endurance-trained and untrained humans. Regul. Integr. Comp. Physiol. 293(2):837–843, 2007.

    Article  Google Scholar 

  55. Leem, C. H., D. Lagadic-Gossmann, and R. D. Vaughan-Jones. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J. Physiol. 517(Pt 1):159–180, 1999.

    Article  PubMed  Google Scholar 

  56. Lemmens, H. J., D. P. Bernstein, and J. B. Brodsky. Estimating blood volume in obese and morbidly obese patients. Obes. Surg. 16(6):773–776, 2006.

    Article  PubMed  Google Scholar 

  57. Li, Z., T. Yipintsoi, and J. B. Bassingthwaighte. Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann. Biomed. Eng. 25(4):604–619, 1997.

    Article  PubMed  Google Scholar 

  58. Losse, B., S. Schuchhardt, and N. Niederle. The oxygen pressure histogram in the left ventricular myocardium of the dog. Pflugers Arch. 356(2):121–132, 1975.

    Article  PubMed  Google Scholar 

  59. Lovering, A. T., M. K. Stickland, and M. W. Eldridge. Intrapulmonary shunt during normoxic and hypoxic exercise in healthy humans. Adv. Exp. Med. Biol. 588:31–45, 2006.

    Article  PubMed  Google Scholar 

  60. Matschke, K., U. Gerk, C. Mrowietz, J. W. Park, and F. Jung. Influence of radiographic contrast media on myocardial oxygen tension: a randomized, NaCl-controlled comparative study of iodixanol versus iomeprol in pigs. Acta Radiol. 48(3):292–299, 2007.

    Article  PubMed  Google Scholar 

  61. McGuire, B. J., and T. W. Secomb. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J. Appl. Physiol. 91:2255–2265, 2001.

    PubMed  Google Scholar 

  62. Middleton, G., D. Ashby, and F. Clark. Delayed and long-lasting electrocardiographic changes in carbonmonoxide poisoning. Lancet 1:12–14, 1961.

    Article  PubMed  Google Scholar 

  63. Minami, H., B. M. Wolska, M. O. Stojanovic, and R. J. Solaro. Reversal of effects of acidosis on contraction of rat heart myocytes by CGP-48506. Front. Biosci. 13:5638–5645, 2008.

    Article  PubMed  Google Scholar 

  64. Moxham, J., and R. F. Armstrong. Continuous monitoring of right atrial oxygen tension in patients with myocardial infarction. Intensive Care Med. 7(4):157–164, 1981.

    Article  PubMed  Google Scholar 

  65. Nelson, R. R., F. L. Gobel, C. R. Jorgensen, K. Wang, Y. Wang, and H. L. Taylor. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50(6):1179–1189, 1974.

    PubMed  Google Scholar 

  66. Penney, D. G. A review: hemodynamic response to carbon monoxide. Environ. Health Perspect. 77:121–130, 1988.

    Article  PubMed  Google Scholar 

  67. Regan, T., G. Timmis, M. Gray, K. Binak, and H. K. Hellems. Myocardial oxygen consumption during exercise in fasting and lipemic subjects. J. Clin. Invest. 40:624–630, 1961.

    Article  PubMed  Google Scholar 

  68. Reiner, L., A. Mazzoleni, F. L. Rodriguez, and R. R. Freudenthal. The weight of the human heart. I. Normal cases AMA. Arch. Pathol. 68(1):58–73, 1959.

    Google Scholar 

  69. Richardson, R. S., E. A. Noyszewski, B. Saltin, and A. J. Gonzalez. Effect of mild carboxy-hemoglobin on exercising skeletal muscle: intravascular and intracellular evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283(5):1131–1139, 2002.

    Google Scholar 

  70. Richardson, R. S., S. Duteil, C. Wary, D. W. Wray, J. Hoff, and P. G. Carlier. Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J. Physiol. 571(Pt 2):415–424, 2006.

    PubMed  Google Scholar 

  71. Richmond, K. N., S. Burnite, and R. M. Lynch. Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes. Am. J. Physiol. 273:H1613–H1622, 1997.

    Google Scholar 

  72. Roca, J., A. G. Agusti, A. Alonso, D. C. Poole, C. Viegas, J. A. Barbera, R. Rodriguez-Roisin, A. Ferrer, and P. D. Wagner. Effects of training on muscle O2 transport at VO2max. J. Appl. Physiol. 73(3):1067–1076, 1992.

    PubMed  Google Scholar 

  73. Sapirstein, L. A., and E. Ogden. Theoretic limitations of the nitrous oxide method for the determination of regional blood flow. Circ. Res. 4(3):245–249, 1956.

    PubMed  Google Scholar 

  74. Satran, D., C. R. Henry, C. Adkinson, C. I. Nicholson, Y. Bracha, and T. D. Henry. Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J. Am. Coll. Cardiol. 45:1513–1516, 2005.

    Article  PubMed  Google Scholar 

  75. Schenkman, K. A., D. R. Marble, D. H. Burns, and E. O. Feigl. Myoglobin oxygen dissociation by multiwavelength spectroscopy. J. Appl. Physiol. 82(1):86–92, 1997.

    PubMed  Google Scholar 

  76. Stanley, W. C. Myocardial lactate metabolism during exercise. Med. Sci. Sports Exerc. 23(8):920–924, 1991.

    PubMed  Google Scholar 

  77. Stern, F. B., R. A. Lemen, and R. A. Curtis. Exposure of motor vehicle examiners to carbon monoxide: a historical prospective mortality study. Arch. Environ. Health 36:59–65, 1981.

    PubMed  Google Scholar 

  78. Stewart, R. D., J. E. Peterson, T. N. Fisher, M. J. Hosko, E. D. Baretta, H. C. Dodd, and A. A. Herrmann. Experimental human exposure to high concentrations of carbon monoxide. Arch. Environ. Health. 26(1):1–7, 1973.

    PubMed  Google Scholar 

  79. Stickland, M. K., A. T. Lovering, and M. W. Eldridge. Exercise-induced arteriovenous intrapulmonary shunting in dogs. Am. J. Respir. Crit. Care Med. 176(3):300–305, 2007.

    Article  PubMed  Google Scholar 

  80. Takahashi, E., and K. Doi. Impact of diffusional oxygen transport on oxidative metabolism in the heart. Jpn. J. Physiol. 48(4):243–252, 1998.

    Article  PubMed  Google Scholar 

  81. Tokunaga, C., R. M. Bateman, J. Boyd, Y. Wang, J. A. Russell, and K. R. Walley. Albumin resuscitation improves ventricular contractility and myocardial tissue oxygenation in rat endotoxemia. Crit. Care Med. 35(5):1341–1347, 2007.

    Article  PubMed  Google Scholar 

  82. Turek, Z., K. Rakusan, J. Olders, L. Hoofd, and F. Kreuzer. Computed myocardial PO2 histograms: effects of various geometrical and functional conditions. J. Appl. Physiol. 70:1845–1853, 1991.

    PubMed  Google Scholar 

  83. Vogel, J. A., and M. A. Gleser. Effect of carbon monoxide on oxygen transport during exercise. J. Appl. Physiol. 32(2):234–239, 1972.

    PubMed  Google Scholar 

  84. Walley, K. R., R. M. Collins, D. J. Cooper, and C. B. Warriner. Myocardial anaerobic metabolism occurs at a critical coronary venous PO2 in pigs. Am. J. Respir. Crit. Care Med. 155(1):222–228, 1997.

    PubMed  Google Scholar 

  85. Weaver, L. K. Carbon monoxide poisoning. Crit. Care Clin. 15:297–317, 1999.

    Article  PubMed  Google Scholar 

  86. Wittenberg, B. A., and J. B. Wittenberg. Oxygen pressure gradients in isolated cardiac myocytes. J. Biol. Chem. 260(11):6548–6554, 1985.

    PubMed  Google Scholar 

  87. Yanir, Y., A. Shupak, A. Abramovich, S. A. Reisner, and A. Lorber. Cardiogenic shock complicating acute carbon monoxide poisoning despite neurologic and metabolic recovery. Ann. Emerg. Med. 40:420–424, 2002.

    Article  PubMed  Google Scholar 

  88. Zavorsky, G. S., K. B. Quiron, P. S. Massarelli, and L. C. Lands. The relationship between single-breath diffusion capacity of the lung for nitric oxide and carbon monoxide during various exercise intensities. Chest 125(3):1019−1027, 2004.

    Article  PubMed  Google Scholar 

  89. Zhang, J., K. Ugurbil, A. H. From, and R. J. Bache. Myocardial oxygenation and high-energy phosphate levels during graded coronary hypoperfusion. Am. J. Physiol. Heart Circ. Physiol. 280(1):H318–H326, 2001.

    PubMed  Google Scholar 

  90. Zhou, L., J. E. Salem, G. M. Saidel, W. C. Stanley, and M. E. Cabrera. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia. Am. J. Physiol. Heart Circ. Physiol. 288(5):H2400–H2411, 2005.

    Article  PubMed  Google Scholar 

  91. Zhou, L., M. E. Cabrera, I. C. Okere, N. Sharma, and W. C. Stanley. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Am. J. Physiol. Heart Circ. Physiol. 291(3):H1036–H1046, 2006.

    Article  PubMed  Google Scholar 

  92. Zhu, N., and H. R. Weiss. Effect of hypoxic and carbon monoxide-induced hypoxia on regional myocardial segment work and O2 consumption. Res. Exp. Med. 194(2):97–107, 1994.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant from NIOSH (OH 008651). The authors thank Dr. Vernon Benignus (US EPA, Research Triangle Park), Dr. Caroline Burge (University of Melbourne, Australia), Dr. Paul Kizakevich (RTI, Research Triangle Park, NC), and Dr. Marko Laaksonen (Turku PET Center, University of Turku, Finland) for providing both data published in their papers7,11,50,54 and unpublished measurements of parameter values from their subjects. The code and the command files of the computational model are available for download on http://www.acslx-wiki.com/dokuwiki/doku.php?id=models:pbpk:extravascularco

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnera Erupaka.

Appendices

Appendix A: Glossary of Model Parameters and Variables

This section contains tables of symbols, parameter values, steady state values and initial conditions.

Table A1 Primary compartmental variables and parameters
Table A2 Definition of symbols related to diffusion coefficients and permeability surface area products
Table A3 Definitions of symbols and subject-specific values used in simulation of experiments of Benignus et al.7; Burge et al.,11 Kizakevich et al.50 (— Indicates “not applicable”)
Table A4 Parameters and their default values
Table A5 Initial valuesa
Table A6 Steady state values of concentrations (mL/mL) of O2 (C kO2) and CO (C kCO) for different subjects, whose responses were simulated using values from Table A3

Appendix B: Mass Balance Equations for Oxygen (O2) and Carbon Monoxide (CO)

Lung (Alveolar (L) and End-Pulmonary (ep)) Compartments

$$ V_{\rm L} {\frac{{dC_{\rm A} {\text {O}}_{2} (t)}}{dt}} = \left( {{\text {P}}_{\rm I} {\text {O}}_{2} (t) - {\text {P}}_{\rm A} {\text {O}}_{2} (t)} \right) \cdot {\frac{{\dot{V}_{\rm A} }}{{{\text {P}}_{\rm B} }}} - {\text {O}}_{2} {\text {flux}}_{\rm LB} (t) $$
(B.1)
$$ V_{\rm L} {\frac{{dC_{\rm A} {\text {CO}}(t)}}{dt}} = \left( {{\text {P}}_{\rm I} {\text {CO}}(t) - {\text {P}}_{\rm A} {\text {CO}}(t)} \right) \cdot {\frac{{\dot{V}_{\rm A} }}{{{\text {P}}_{\rm B} }}} - {\text {COflux}}_{\rm LB} (t) $$
(B.2)

Auxiliary Equations for Lung Compartment

$$ {\text {P}}_{\rm I} {\text {O}}_{2} = {\text {F}}_{\rm I} {\text {O}}_{2} \cdot \left( {{\text {P}}_{\rm B} - 47} \right) \cdot \left( {{\frac{310}{{{\text {CO}}_{\rm temp} }}}} \right) $$
$${\hbox{P}}_{\rm I}{\hbox{CO}}(t)=\left\{\begin{array}{ll} {0}, & 0 \le t < T_{\rm CO} \\({\hbox{P}}_{\rm B} - 47)\cdot \left(\frac{310}{{\hbox{CO}}_{\rm temp}}\right)\cdot \left(\frac{{\hbox{CO}}_{\rm ppm}}{10^{6}}\right), & T_{\rm CO}\le t < T {\hbox{th}} \\ {0}, & t \ge T{\hbox{th}} \\ \end{array} \right\}$$
$$ {\text {O}}_{2} {\text {flux}}_{\rm LB} (t) = \dot{Q}(t) \cdot \left( {1 - SF} \right) \cdot \left( {C_{\rm ep} {\text {O}}_{2} (t) - C_{\rm mx} {\text {O}}_{2} (t - d_{\rm v} )} \right) $$
$$ \dot{Q}(t) = \dot{Q}_{0} \cdot \left[ {1 + 0.572\left( {\% {\text {COHb}}(t)} \right)} \right] $$

If \( \dot{Q}_{0} \) is not measured by the investigators then regression equations (Eqs. C.3 or C.4) are used to estimate \( \dot{Q}_{0}. \)

$$ C_{\rm ep} {\text {O}}_{2} (t) = {\text {O}}_{2} {\text {Hb}}_{\rm ep} (t) + {\text {S}}_{{{\text {O}}_{2} }} \cdot {\text {P}}_{\rm ep} {\text {O}}_{2} (t) $$
$$ {\text {O}}_{2} {\text {Hb}}_{\rm ep} (t) = f_{\rm odc} ({\text{P}}_{\text{ep}} {\text{O}}_{2} (t),{\text {P}}_{50} (t),n(t),C_{\text{maxep}} (t)) $$

[See section “Special Functions” (F.1) for description of f odc]

$$ {\text {P}}_{\rm ep} {\text {O}}_{2} (t) = {\text {P}}_{\rm A} {\text {O}}_{2} (t) $$
$$ {\text {P}}_{\rm A} {\text {O}}_{2} (t) = C_{\rm A} {\text {O}}_{2} (t) \cdot {\text {P}}_{\rm B} $$
$$ {\text {P}}_{50} (t) = 50.4219\left[ {1 + { \exp }\left\{ {0.0215\left( {\% {\text {COHb}}(t)} \right)} \right\}} \right]^{ - 1} $$
$$ n(t) = 1.7493 + 0.5909\left[ {{ \exp }\left\{ { - 0.025\left( {\% {\text {COHb}}(t)} \right)} \right\}} \right] $$
$$ \% {\text {COHb}}(t) = \left( {{\frac{100 \cdot {\text {COHb}}(t)}{{{\text {O}}_{2} {\text {Hb}}_{ \max } }}}} \right) $$
$$ {\text {COHb}}(t) = C_{\rm ar} {\text {CO}}(t) - \left( {{\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm ar} {\text {CO}}(t)} \right) $$
$$ C_{{{ \max }{\rm ep}}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}_{\rm ep} (t) $$
$$ {\text {O}}_{2} {\text {Hb}}_{ \max } = K_{\rm O_{2}/{\rm gHb}} (C_{\rm Hgb} ) $$
$$ {\text {COHb}}_{\rm ep} (t) = \, C_{\rm ep} {\text {CO}}(t) - \left( {{\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm ep} {\text {CO}}(t)} \right) $$
$$ C_{\rm ep} {\text {CO}}(t) = C_{\rm mx} {\text {CO}}(t - d_{\rm v} ) + \left( {{\frac{{{\text {COflux}}_{\rm LB} (t)}}{{(1 - SF) \cdot \dot{Q}(t)}}}} \right) $$
$$ C_{\rm mx} {\text {CO}}(t) = \text{COHb}_{\rm mx}(t) + (S_{\text{CO}}\cdot \text{P}_{\text{mx}}\text{CO}(t)) $$

[See section “Mixed Venous Blood Compartment, (mx)” for definition of COHbmx(t)]

$$ {\text {COflux}}_{\rm LB} (t) = \left[ {{\text {P}}_{\rm A} {\text {CO}} - 0.5\left( {{\text {P}}_{\rm ep} {\text {CO}}(t) + {\text {P}}_{\rm mx} {\text {CO}}(t - d_{\rm v} )} \right)} \right] \cdot D_{\rm L} {\text {CO}} $$
$$ {\text {P}}_{\rm A} {\text {CO}}(t) = C_{\rm A} {\text {CO}}(t) \cdot {\text {P}}_{\rm B} $$
$$ {\text {P}}_{\rm ep} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm ep} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm ep} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm ep} (t)}}}} \right) $$

Lung (End-Capillary) Compartment, (ec)

$$ C_{\rm ec} {\text {O}}_{2} (t) = SF \cdot C_{\rm mx} {\text {O}}_{2} (t - d_{\rm v} ) + (1 - SF) \cdot C_{\rm ep} {\text {O}}_{2} (t) $$
$$ {\text {O}}_{2} {\text {Hb}}_{\rm ec} (t) = f_{\rm odc} ({\text {P}}_{\rm ec} {\text {O}}_{2} (t),{\text {P}}_{50} (t),n(t),C_{{{ \max }\rm ec}} (t)) $$

[See section “Special Functions” (F.1) for description of f odc]

$$ {\text {P}}_{\rm ec} {\text {O}}_{2} (t) = f_{\rm imp} ({\text {S}}_{{{\text {O}}_{2} }} ,C_{{{ \max }\rm ec}} (t),{\text {P}}_{50} (t),n(t),C_{\rm ec} {\text {O}}_{2} (t)) $$

[See section “Special Functions” (F.3) for description of f imp]

$$ C_{{{ \max }\rm ec}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}_{\rm ec} (t) $$
$$ {\text {COHb}}_{\rm ec} (t) = C_{\rm ec} {\text {CO}}(t) - {\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm ec} {\text {CO}}(t) $$
$$ C_{\rm ec} {\text {CO}}(t) = C_{\rm mx} {\text {CO}}(t - d_{\rm v} ) + {\frac{{{\text {COflux}}_{\rm LB} (t)}}{{\dot{Q}(t)}}} $$
$$ {\text {P}}_{\rm ec} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm ec} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm ec} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm ec} (t)}}}} \right) $$

Arterial Blood Compartment, (ar)

$$ V_{\rm ar} {\frac{{dC_{\rm ar} {\text {O}}_{2} (t)}}{dt}} = \left( {C_{\rm ec} {\text {O}}_{2} (t) - C_{\rm ar} {\text {O}}_{2} (t)} \right) \cdot \dot{Q}(t) $$
(B.3)
$$ V_{\rm ar} {\frac{{dC_{\rm ar} {\text {CO}}(t)}}{dt}} = \left( {C_{\rm ec} {\text {CO}}(t) - C_{\rm ar} {\text {CO}}(t)} \right) \cdot \dot{Q}(t) $$
(B.4)

Auxiliary Equations for Arterial Blood Compartment

$$ \text{P}_{\rm ar} {\text {O}}_{2} (t) = f_{\rm imp} ({\text {S}}_{{{\text {O}}_{2} }} ,C_{{{ \max }\rm ar}} (t),{\text {P}}_{50} (t),n(t),C_{\rm ar} {\text {O}}_{2} (t)) $$

[See section “Special Functions” (F.3) for description of f imp]

$$ C_{{{ \max }\rm ar}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}(t) $$
$$ {\text {O}}_{2} {\text {Hb}}_{\rm ar} (t) = f_{\rm odc} ({\text {P}}_{\rm ar} {\text {O}}_{2} (t),{\text {P}}_{50} (t),n(t),C_{{{ \max }\rm ar}} (t)) $$

[See section “Special Functions” (F.1) for description of f odc]

$$ {\text {P}}_{\rm ar} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm ar} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{\text {COHb}}(t)}{{{\text {O}}_{2} {\text {Hb}}_{\rm ar} (t)}}}} \right) $$
$$ V_{\rm ar} = 0.25\left( {V_{\rm b} - V_{\rm bm} - V_{\rm bot} } \right) $$

Skeletal Muscle Compartment

Skeletal Muscle Tissue Compartment 1, (m 1 )

$$ {\frac{{dC_{\rm m1} {\text {O}}_{2} (t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm m1} {\text {O}}_{2} (t)}}{{V_{\rm m1} }}} + {\frac{{D_{\rm m}^{'} {\text {O}}_{2} \cdot \left( {C_{\rm m2}^{d} {\text {O}}_{2} (t) - C_{\rm m1}^{d} {\text {O}}_{2} (t)} \right)}}{{D_{\rm xm} }}} - {\frac{{{{MR}}_{\rm m1} {\text {O}}_{2} (t)}}{{V_{\rm m1} }}} $$
(B.5)
$$ {\frac{{dC_{\rm m1} {\text {CO}}(t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm m1} {\text {CO}}(t)}}{{V_{\rm m1} }}} + {\frac{{D_{\rm m}^{'} {\text {CO}} \cdot \left( {C_{\rm m2}^{d} {\text {CO}}(t) - C_{\rm m1}^{d} {\text {CO}}(t)} \right)}}{{D_{\rm xm} }}} $$
(B.6)

Skeletal Muscle Tissue compartment 2, (m 2 )

$$ {\frac{{dC_{\rm m2} {\text {O}}_{2} (t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm m2} {\text {O}}_{2} (t)}}{{V_{\rm m2} }}} + {\frac{{D_{\rm m}^{'} {\text {O}}_{2} \cdot \left( {C_{\rm m1}^{d} {\text {O}}_{2} (t) - C_{\rm m2}^{d} {\text {O}}_{2} (t)} \right)}}{{D_{\rm xm} \cdot \left( {{\raise0.7ex\hbox{${V_{\rm m2} }$} \!\mathord{\left/ {\vphantom {{V_{\rm m2} } {V_{\rm m1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${V_{\rm m1} }$}}} \right)}}} - {\frac{{{{MR}}_{\rm m2} {\text {O}}_{2} (t)}}{{V_{\rm m2} }}} $$
(B.7)
$$ {\frac{{dC_{\rm m2} {\text {CO}}(t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm m2} {\text {CO}}(t)}}{{V_{\rm m2} }}} + {\frac{{D_{\rm m}^{'} {\text {CO}} \cdot \left( {C_{\rm m1}^{d} {\text {CO}}(t) - C_{\rm m2}^{d} {\text {CO}}(t)} \right)}}{{D_{\rm xm} \cdot \left( {{\raise0.7ex\hbox{${V_{\rm m2} }$} \!\mathord{\left/ {\vphantom {{V_{\rm m2} } {V_{\rm m1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${V_{\rm m1} }$}}} \right)}}} $$
(B.8)

Skeletal Blood compartment 1, (bm 1 )

$$ V_{\rm bm1} {\frac{{dC_{\rm mv1} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm ar} {\text {O}}_{2} (t) - C_{\rm mv1} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm m1} (t) $$
(B.9)
$$ V_{\rm bm1} {\frac{{dC_{\rm mv1} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm ar} {\text {CO}}(t) - C_{\rm mv1} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm m1} (t) $$
(B.10)

Skeletal Blood compartment 2, (bm 2 ):

$$ V_{\rm bm2} {\frac{{dC_{\rm mv2} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm mv1} {\text {O}}_{2} (t) - C_{\rm mv2} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm m2} (t) $$
(B.11)
$$ V_{\rm bm2} {\frac{{dC_{\rm mv2} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm mv1} {\text {CO}}(t) - C_{\rm mv2} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm m2} (t) $$
(B.12)

Skeletal Blood compartment 3, (bm 3 ):

$$ V_{\rm bm3} {\frac{{dC_{\rm mv3} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm mv2} {\text {O}}_{2}(t) - C_{\rm mv3} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm m3} (t) $$
(B.13)
$$ V_{\rm bm3} {\frac{{dC_{\rm mv3} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm m} (t) \cdot \left( {C_{\rm mv2} {\text {CO}}(t) - C_{\rm mv3} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm m3} (t) $$
(B.14)

Auxiliary Equations for Skeletal Tissue Compartment 1, m1

$$ V_{\rm m1} = Fv_{\rm m} \cdot V_{\rm m} $$
$$ {{MR}}_{\rm m1} {\text {O}}_{2} = \left( {{{MR}}_{\rm m} {\text {O}}_{2} } \right) \cdot {\frac{{V_{\rm m1} }}{{V_{\rm m1} + V_{\rm m2} }}} $$
$$ {{MR}}_{\rm m} {\text {O}}_{2} = 1.21\left( {{\frac{{{{MR}}_{\rm lm} {\text {O}}_{2} \cdot V_{\rm lm} + MR_{\rm am} {\text {O}}_{2} \cdot V_{\rm am} + {{MR}}_{\rm tm} {\text {O}}_{2} \cdot V_{\rm tm} }}{\rho }}} \right) $$
$$ {{MR}}_{\rm m1} {\text {O}}_{2} (t) = \left( {{{MR}}_{\rm m} {\text {O}}_{2} } \right) \cdot \left( {{\frac{{V_{\rm m1} }}{{V_{\rm m1} + V_{\rm m2} }}}} \right) \cdot \left( {{\frac{{{\text {P}}_{\rm m1} {\text {O}}_{2} (t)}}{{K_{\rm m} {\text {O}}_{2} + {\text {P}}_{\rm m1} {\text {O}}_{2} (t)}}}} \right) $$
$$ {\text {Flux}}_{\rm m1} {\text {O}}_{2} (t) = {\text {O}}_{2} {\text {Flux}}_{\rm m1} (t) + {\text {O}}_{2} {\text {Flux}}_{\rm m3} (t) $$
$$ {\text {P}}_{\rm m1} {\text {O}}_{2} (t) = f_{\rm imp} \left( {{\text {S}}_{{{\text {O}}_{2} }} ,{\text {O}}_{2} {\text {Mb}}_{\max {\rm m1}} (t),{\text {P}}_{50{\rm m}} ,C_{\rm m1} {\text {O}}_{2}(t),V_{\rm m1} } \right) $$

[See section “Special Functions” (F.3) for description of f imp]

$$ C_{\rm m1}^{d} {\text {O}}_{2} (t) = C_{\rm m1} {\text {O}}_{2} (t) - {\text {O}}_{2} {\text {Mb}}_{\rm m1} (t) $$
$$ C_{\rm m1}^{d} {\text {CO}}(t) = {\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm m1} {\text {CO}}(t) $$
$$ {\text {O}}_{2} {\text {Mb}}_{{{ \max }\rm m1}} (t) = C{\text {Mb}}_{ \max } - {\text {COMb}}_{\rm m1} (t) $$
$$C{\text {Mb}}_{\max } = {\frac{64500}{17000}}\left({{\frac{{K_{{\text {O}}_{2}}} }{4}} \cdot C_{\rm Mbm} } \right) $$
$$ {\text {COMb}}_{\rm m1} (t) = C_{\rm m1} {\text {CO}}(t) - \left( {{\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm m1} {\text {CO}}(t)} \right) $$
$$ {\text {P}}_{\rm m1} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm m1} {\text {O}}_{2} (t)}}{{M_{\rm M} }}}} \right) \cdot \left( {{\frac{{{\text {COMb}}_{\rm m1} (t)}}{{{\text {O}}_{2} {\text {Mb}}_{\rm m1} (t)}}}} \right) $$
$$ {\text {O}}_{2} {\text {Mb}}_{\rm m1} (t) = {\text {O}}_{2} {\text {Mb}}_{{{ \max }\rm m1}} (t) \cdot \left( {{\frac{{{\text {P}}_{\rm m1} {\text {O}}_{2} (t)}}{{{\text {P}}_{50{\rm m}} + {\text {P}}_{\rm m1} {\text {O}}_{2} (t)}}}} \right) $$
$$ D_{\rm m}^{'} {\text {O}}_{2} = 600 \cdot D{\text {O}}_{2} $$
$$ {\text {Flux}}_{\rm m1} {\text {CO}}(t) = {\text {COFlux}}_{\rm m1} (t) + {\text {COFlux}}_{\rm m3} (t) $$
$$ D_{\rm m}^{'} {\text {CO}} = 0.75D_{\rm m}^{'} {\text {O}}_{2} $$
$$ C_{\rm m1} {\text {O}}_{2} (t) = {\text {O}}_{2} {\text {Mb}}_{\rm m1} (t) + {\text {S}}_{{{\text {O}}_{2} }} \cdot {\text {P}}_{\rm m1} {\text {O}}_{2} (t) $$
$$ C_{\rm m1} {\text {CO}}(t) = {\text {COMb}}_{\rm m1} (t) + {\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm m1} {\text {CO}}(t) $$

Auxiliary Equations for Skeletal Tissue Compartment 2, m2

$$ V_{\rm m2} = \left( {1 - Fv_{\rm m} } \right) \cdot V_{\rm m} $$
$$ {{MR}}_{\rm m2} {\text {O}}_{2} = \left( {{{MR}}_{\rm m} {\text {O}}_{2} } \right) \cdot {\frac{{V_{\rm m2} }}{{V_{\rm m1} + V_{\rm m2} }}} $$
$$ {\text {Flux}}_{\rm m2} {\text {O}}_{2} (t) = {\text {O}}_{2} {\text {Flux}}_{\rm m2} (t) $$
$$ {\text {Flux}}_{\rm m2} {\text {CO}}(t) = {\text {COFlux}}_{\rm m2} (t) $$
$$ C_{\rm m2}^{d} {\text {O}}_{2} (t) = C_{\rm m2} {\text {O}}_{2} (t) - {\text {O}}_{2} {\text {Mb}}_{\rm m2} (t) $$
$$ C_{\rm m2}^{d} {\text {CO}}(t) = {\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm m2} {\text {CO}}(t) $$

All other equations are similar to those of skeletal tissue compartment 1.

Auxiliary Equations for Skeletal Blood Compartment 1, (bm1)

$$ {\text {O}}_{2} {\text {Flux}}_{\rm m1} (t) = D{\text {b}}_{\rm m1} {\text {O}}_{2} (t) \cdot \left( {{\text {P}}_{\rm a1m} {\text {O}}_{2} (t) - {\text {P}}_{\rm m1} {\text {O}}_{2} (t)} \right) $$
$$ {\text {P}}_{\rm a1m} {\text {O}}_{2} (t) = f_{\rm getPavg} \left( {{\text {O}}_{2} {\text {Hb}}_{{{ \max }\rm m1}} (t),V{\text {b}}_{\rm m1} ,{\text {P}}_{50} (t),n(t),C_{\rm m1av} {\text {O}}_{2} (t),{\text {S}}_{{{\text {O}}_{2} }} ,{\text {P}}_{\rm ar} {\text {O}}_{2} (t),{\text {P}}_{\rm mv1} {\text {O}}_{2} (t)} \right) $$

[See section “Special Functions” (F.5) for description of f getPavg]

$$ {\text {O}}_{2} {\text {Hb}}_{{{ \max }\rm m1}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}(t) $$
$$ C_{\rm m1av} {\text {O}}_{2} (t) = 0.5\left( {C_{\rm ar} {\text {O}}_{2} (t) + C_{\rm mv1} {\text {O}}_{2} (t)} \right) $$
$$ \dot{Q}_{\rm m} (t) = \dot{Q}_{\rm m0} \cdot \left[ {1 + 0.572\left( {\% {\text {COHb}}(t)} \right)} \right] $$
$$ \dot{Q}_{\rm m0} = \left( {\dot{Q}_{\text{lmg}} \cdot V_{\text{lm}} } \right) + \left( {\dot{Q}_{\text{amg}} \cdot V_{\text{am}} } \right) + \left( {\dot{Q}_{\text{tmg}} \cdot V_{\text{tm}} } \right) $$
$$ V_{\rm bm1} = F_{\rm vm} \cdot V_{\rm bm} $$
$$ V_{\rm bm} = {\text {volfrac}}_{\rm m} \cdot V_{\rm m} $$
$$ \left[ {{\text {P}}_{\rm mv1} {\text {O}}_{2} (t),{\text {O}}_{2} {\text {Hb}}_{\rm mv1} (t)} \right] = f_{{{\text {getPO}}_{2} }} ({\text {O}}_{2} {\text {Hb}}_{\rm ar} (t),{\text {P}}_{50} (t),n(t),{\text {O}}_{2} {\text {Hb}}_{\max {\rm m1}} (t),S_{{{\text {O}}_{2} }} ,{\text {P}}_{\rm ar} {\text {O}}_{2} (t),\dot{Q}_{\rm m} (t)) $$

[See section “Special Functions” (F.4) for description of \( f_{{{\rm getPO}_{2} }} \)]

$$ \begin{aligned} D{\text {b}}_{\rm m1} {\text {O}}_{2} (t) & = {\frac{{PS_{\rm m1} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \cdot V_{\rm m1} }}{1.04}} \\ PS_{\rm m1} {\text {O}}_{2} (t) & = PS_{\rm mav\_rest} \cdot {\frac{{\dot{Q}_{\rm m} (t)}}{{\dot{Q}_{\rm m0} }}} \\ {\text {COFlux}}_{\rm m1} (t) & = D{\text {b}}_{\rm m1} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a1m} {\text {CO}}(t) - {\text {P}}_{\rm m1} {\text {CO}}(t)} \right) \\ D_{\rm bm1} {\text {CO}}(t) & = D_{\rm M} {\text {CO}} \cdot \left( {{\frac{{D{\text {b}}_{\rm m1} {\text {O}}_{2} (t)}}{{D{\text {b}}_{\rm m2} {\text {O}}_{2} (t)}}}} \right) \\ {\text {P}}_{\rm a1m} {\text {CO}}(t) & = 0.5\left( {{\text {P}}_{\rm ar} {\text {CO}}(t) \, + \, {\text {P}}_{\rm mv1} {\text {CO}}(t)} \right) \\ {\text {P}}_{\rm mv1} {\text {CO}}(t) & = \left( {{\frac{{{\text {P}}_{\rm mv1} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm mv1} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm mv1} (t)}}}} \right) \\ {\text {COHb}}_{\rm mv1} (t) & = C_{\rm mv1} {\text {CO}}(t) - \left( {{\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm mv1} {\text {CO}}(t)} \right) \\ \end{aligned} $$

Auxiliary Equations for Skeletal Blood Compartment 2, (bm2)

$$ \begin{aligned} {\text {O}}_{2} {\text {Flux}}_{\rm m2} (t) & = D{\text {b}}_{\rm m2} {\text {O}}_{2} (t) \cdot \left( {{\text {P}}_{\rm a2m} {\text {O}}_{2} (t) - {\text {P}}_{\rm m2} {\text {O}}_{2} (t)} \right) \\ V_{\rm bm2} & = \left( {1 - F_{\rm vm} } \right) \cdot V_{\rm bm} \\ D{\text {b}}_{\rm m2} {\text {O}}_{2} (t) & = {\frac{{PS_{\rm m2} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \cdot V_{\rm m2} }}{1.04}} \\ PS_{\rm m2} {\text {O}}_{2} (t) & = PS_{\rm mcap\_rest} \cdot {\frac{{\dot{Q}_{\rm m} (t)}}{{\dot{Q}_{\rm m0} }}} \\ {\text {COFlux}}_{\rm m2} (t) & = D{\text {b}}_{\rm m2} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a2m} {\text {CO}}(t) - {\text {P}}_{\rm m2} {\text {CO}}(t)} \right) \\ D{\text {b}}_{\rm m2} {\text {CO}}(t) & = D_{\rm M} {\text {CO}} \\ \end{aligned} $$

All other equations are similar to those of skeletal blood compartment 1.

Auxiliary Equations for Skeletal Blood Compartment 3, (bm3)

$$ \begin{aligned} {\text {O}}_{2} {\text {Flux}}_{\rm m3} (t) & = D{\text {b}}_{\rm m3} {\text {O}}_{2} (t) \cdot \left( {{\text {P}}_{\rm a3m} {\text {O}}_{2} (t) - {\text {P}}_{\rm m1} {\text {O}}_{2} (t)} \right) \\ V_{\rm bm3} & = D_{\rm bvm\_on} \cdot V_{\rm bm1} \\ D{\text {b}}_{\rm m3} {\text {O}}_{2} (t) & = D{\text {b}}_{\rm m1} {\text {O}}_{2} (t) \cdot D_{\rm bvm\_on} \\ {\text {COFlux}}_{\rm m3} (t) & = D_{\rm bm3} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a3m} {\text {CO}}(t) - {\text {P}}_{\rm m1} {\text {CO}}(t)} \right) \\ D_{\rm bm3} {\text {CO}}(t) & = D_{\rm M} {\text {CO}} \cdot \left( {{\frac{{D{\text {b}}_{\rm m3} {\text {O}}_{2}(t)}}{{D{\text {b}}_{\rm m2} {\text {O}}_{2}(t)}}}} \right) \\ \end{aligned} $$

All other equations are similar to those of skeletal blood compartment 1.

Cardiac Muscle Compartment

Cardiac Muscle Tissue Compartment 1, (c 1 )

$$ {\frac{{dC_{\rm c1} {\text {O}}_{2} (t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm c1} {\text {O}}_{2} (t)}}{{V_{\rm c1} }}} + {\frac{{D_{\rm c}^{'} {\text {O}}_{2} \cdot \left[ {C_{\rm c2}^{d} {\text {O}}_{2} (t) - C_{\rm c1}^{d} {\text {O}}_{2} (t)} \right]}}{{D_{\rm xc} }}} - {\frac{{{{MR}}_{\rm c1} {\text {O}}_{2} (t)}}{{V_{\rm c1} }}} $$
(B.15)
$$ {\frac{{dC_{\rm c1} {\text {CO}}(t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm c1} {\text {CO}}(t)}}{{V_{\rm c1} }}} + {\frac{{D_{\rm c}^{'} {\text {CO}} \cdot \left[ {C_{\rm c2}^{d} {\text {CO}}(t) - C_{\rm c1}^{d} {\text {CO}}(t)} \right]}}{{D_{\rm xc} }}} $$
(B.16)

Cardiac Muscle Tissue Compartment 2, (c 2 )

$$ {\frac{{dC_{\rm c2} {\text {O}}_{2} (t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm c2} {\text {O}}_{2} (t)}}{{V_{\rm c2} }}} + {\frac{{D_{\rm c}^{'} {\text {O}}_{2} \cdot \left( {C_{\rm c1}^{d} {\text {O}}_{2} (t) - C_{\rm c2}^{d} {\text {O}}_{2} (t)} \right)}}{{D_{\rm xc} \cdot \left( {{\raise0.7ex\hbox{${V_{\rm c2} }$} \!\mathord{\left/ {\vphantom {{V_{\rm c2} } {V_{\rm c1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${V_{\rm c1} }$}}} \right)}}} - {\frac{{{{MR}}_{\rm c2} {\text {O}}_{2} (t)}}{{V_{\rm c2} }}} $$
(B.17)
$$ {\frac{{dC_{\rm c2} {\text {CO}}(t)}}{dt}} = {\frac{{{\text {Flux}}_{\rm c2} {\text {CO}}(t)}}{{V_{\rm c2} }}} + {\frac{{D_{\rm c}^{'} {\text {CO}} \cdot \left( {C_{\rm c1}^{d} {\text {CO}}(t) - C_{\rm c2}^{d} {\text {CO}}(t)} \right)}}{{D_{\rm xc} \cdot \left( {{\raise0.7ex\hbox{${V_{\rm c2} }$} \!\mathord{\left/ {\vphantom {{V_{\rm c2} } {V_{\rm c1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${V_{\rm c1} }$}}} \right)}}} $$
(B.18)

Cardiac Blood compartment 1, (bc 1 )

$$ V_{\rm bc1} {\frac{{dC_{\rm cv1} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm ar} {\text {O}}_{2} (t) - C_{\rm cv1} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm c1} (t) $$
(B.19)
$$ V_{\rm bc1} {\frac{{dC_{\rm cv1} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm ar} {\text {CO}}(t) - C_{\rm cv1} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm c1} (t) $$
(B.20)

Cardiac Blood compartment 2, (bc 2 )

$$ V_{\rm bc2} {\frac{{dC_{\rm cv2} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm cv1} {\text {O}}_{2} (t) - C_{\rm cv2} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm c2} (t) $$
(B.21)
$$ V_{\rm bc2} {\frac{{dC_{\rm cv2} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm cv1} {\text {CO}}(t) - C_{\rm cv2} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm c2} (t) $$
(B.22)

Cardiac Blood compartment 3, (c 3 )

$$ V_{\rm bc3} {\frac{{dC_{\rm cv3} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm cv2}} {\text {O}_{2}(t) - C_{\rm cv3} {\text {O}}_{2} (t)} \right) - {\text {O}}_{2} {\text {Flux}}_{\rm c3} (t) $$
(B.23)
$$ V_{\rm bc3} {\frac{{dC_{\rm cv3} {\text {CO}}(t)}}{dt}} = \dot{Q}_{\rm c} (t) \cdot \left( {C_{\rm cv2} {\text {CO}}(t) - C_{\rm cv3} {\text {CO}}(t)} \right) - {\text {COFlux}}_{\rm c3} (t) $$
(B.24)

Auxiliary Equations Cardiac Tissue Compartment 1, c1

$$ \begin{aligned} V_{\rm c1} & = Fv_{\rm c} \cdot V_{\rm c} \\ {{MR}}_{\rm c1} {\text {O}}_{2} & = \left( {{{MR}}_{\rm c} {\text {O}}_{2} } \right) \cdot {\frac{{V_{{{\text{c}}1}} }}{{V_{{{\text{c}}1}} + V_{{{\text{c}}2}} }}} \\ {{MR}}_{\rm c} {\text {O}}_{2} & = 1.21\left( {{\frac{{M_{\rm c} \cdot V_{\rm c} }}{100\rho }}} \right) \\ M_{\rm c} & = {\frac{46.6}{{1 + \left( {{\frac{122.7}{HR}}} \right)^{4.85} }}} + 9.76 \\ {{MR}}_{\rm c1} {\text {O}}_{2} (t) & = \left( {{{MR}}_{\rm c} {\text {O}}_{2} } \right) \cdot \left( {{\frac{{V_{\rm c1} }}{{V_{\rm c1} + V_{\rm c2} }}}} \right) \cdot \left( {{\frac{{{\text {P}}_{\rm c1} {\text {O}}_{2} (t)}}{{K_{\rm c} {\text {O}}_{2} + {\text {P}}_{\rm c1} {\text {O}}_{2} (t)}}}} \right) \\ {\text {Flux}}_{\rm c1} {\text {O}}_{2} (t) & = {\text {O}}_{2} {\text {Flux}}_{\rm c1} (t) + {\text {O}}_{2} {\text {Flux}}_{\rm c3} (t) \\ {\text {P}}_{\rm c1} {\text {O}}_{2} (t) & = f_{\rm imp} ({\text {S}}_{{{\text {O}}_{2} }} ,{\text {O}}_{2} {\text {Mb}}_{{{ \max }\rm c1}} (t),{\text {P}}_{50{\rm c}} ,C_{\rm c1} {\text {O}}_{2}(t),V_{\rm c1} ) \\ \end{aligned} $$

[See section “Special Functions” (F.3) for description of f imp]

$$ \begin{aligned} C_{\rm c1}^{d} {\text {O}}_{2} (t) & = C_{\rm c1} {\text {O}}_{2} (t) - {\text {O}}_{2} {\text {Mb}}_{\rm c1} (t) \\ C_{\rm c1}^{d} {\text {CO}}(t) & = {\text {S}}_{{\text {CO}}} \cdot {\text {P}}_{{\text {c1}}} {\text {CO}}(t) \\ {\text {O}}_{2} {\text {Mb}}_{{{ \max }\rm c1}} (t) & = {\text {CMb}}_{{{ \max }{\text {c}}}} - {\text {COMb}}_{{\text {c1}}} (t) \\ {\text {CMb}}_{{{ \max }{\text {c}}}} & = {\frac{64500}{17000}}\left( {{\frac{{K_{{{\text {O}}_{2}}} }}{4}} \cdot C_{{\text {Mbc}}} } \right) \\ {\text {COMb}}_{{\text {c1}}} (t) & = C_{{\text {c1}}} {\text {CO}}(t) - \left( {{\text {S}}_{{\text {CO}}} \cdot {\text {P}}_{{\text {c1}}} {\text {CO}}(t)} \right) \\ {\text {P}}_{{\text {c1}}} {\text {CO}}(t) & = \left( {{\frac{{{\text {P}}_{{\text {c1}}} {\text {O}}_{2} (t)}}{{M_{{\text {M}}} }}}} \right) \cdot \left( {{\frac{{{\text {COMb}}_{{\text {c1}}} (t)}}{{{\text {O}}_{2} {\text {Mb}}_{{\text {c1}}} (t)}}}} \right) \\ {\text {O}}_{2} {\text {Mb}}_{{\text {c1}}} (t) & = {\text {O}}_{2} {\text {Mb}}_{{{ \max }{\text {c1}}}} (t) \cdot \left( {{\frac{{{\text {P}}_{{\text {c1}}} {\text {O}}_{2} (t)}}{{{\text {P}}_{50{\text {c}}} + {\text {P}}_{{\text {c1}}} {\text {O}}_{2} (t)}}}} \right) \\ D_{{\text {c}}}^{'} {\text {O}}_{2} & = 600 \cdot D{\text {O}}_{2} \\ {\text {Flux}}_{{\text {c1}}} {\text {CO}}(t) & = {\text {COFlux}}_{{\text {c1}}} (t) + {\text {COFlux}}_{{\text {c3}}} (t) \\ D_{{\text {c}}}^{'} {\text {CO}} & = 0.75D_{{\text {c}}}^{'} {\text {O}}_{2} \\ C_{{\text {c1}}} {\text {O}}_{2} (t) & = {\text {O}}_{2} {\text {Mb}}_{{\text {c1}}} (t) + {\text {S}}_{{{\text {O}}_{2} }} \cdot {\text {P}}_{{\text {c1}}} {\text {O}}_{2} (t) \\ C_{{\text {c1}}} {\text {CO}}(t) & = {\text {COMb}}_{{\text {c1}}} (t) + {\text {S}}_{{\text {CO}}} \cdot {\text {P}}_{{\text {c1}}} {\text {CO}}(t) \\ \end{aligned} $$

Auxiliary Equations Cardiac Tissue Compartment 2, c2

$$ \begin{aligned} V_{\rm c2} & = \left( {1 - Fv_{\rm c} } \right) \cdot V_{\rm c} \\ {{MR}}_{\rm c2} {\text {O}}_{2} & = \left( {{{MR}}_{\rm c} {\text {O}}_{2} } \right) \cdot {\frac{{V_{{{\text{c}}2}} }}{{V_{{{\text{c}}1}} + V_{{{\text{c}}2}} }}} \\ C_{\rm c2}^{d} {\text {O}}_{2} (t) & = C_{\rm c2} {\text {O}}_{2} (t) - {\text {O}}_{2} {\text {Mb}}_{\rm c2} (t) \\ C_{\rm c2}^{d} {\text {CO}}(t) & = {\text {S}}_{{\text {CO}}} \cdot {\text {P}}_{\rm c2} {\text {CO}}(t) \\ {\text {Flux}}_{\rm c2} {\text {O}}_{2} (t) & = {\text {O}}_{2} {\text {Flux}}_{\rm c2} (t) \\ {\text {Flux}}_{\rm c2} {\text {CO}}(t) & = {\text {COFlux}}_{\rm c2} (t) \\ \end{aligned} $$

All other equations are similar to those of cardiac tissue compartment 1.

Auxiliary Equations Cardiac Blood Compartment 1, bc1

$$ \begin{gathered} {\text {O}}_{2} {\text {Flux}}_{\rm c1} (t) = D{\text {b}}_{\rm c1} {\text {O}}_{2} (t) \cdot \left( {{\text {P}}_{\rm a1c} {\text {O}}_{2} (t) - {\text {P}}_{\rm c1} {\text {O}}_{2} (t)} \right) \hfill \\ {\text {P}}_{\rm a1c} {\text {O}}_{2} (t) = f_{\rm getPavg} \left( {{\text {O}}_{2} {\text {Hb}}_{{{ \max }\rm c1}} (t),V{\text {b}}_{\rm c1} ,{\text {P}}_{50} (t),n(t),C_{\rm c1av} {\text {O}}_{2} (t),{\text {S}}_{{{\text {O}}_{2} }} ,{\text {P}}_{\rm ar} {\text {O}}_{2} (t),{\text {P}}_{\rm cv1} {\text {O}}_{2} (t)} \right) \hfill \\ \end{gathered} $$

[See section “Special Functions” (F.5) for description of f getPavg]

$$ \begin{aligned} {\text {O}}_{2} {\text {Hb}}_{{{ \max }\rm c1}} (t) & = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}(t) \\ C_{\rm c1av} {\text {O}}_{2} (t) & = 0.5\left( {C_{\rm ar} {\text {O}}_{2} (t) + C_{\rm cv1} {\text {O}}_{2} (t)} \right) \\ \dot{Q}_{\rm c} (t) & = \dot{Q}_{\rm c0} \cdot \left[ {1 + 0.572\left( {\% {\text {COHb}}(t)} \right)} \right] \\ \dot{Q}_{\rm c0} & = \left( {{\frac{{\left[ {2.18\left( {HR} \right) - 27.3} \right]}}{100}}} \right) \cdot V_{\text{c}} \\ V_{\rm bc1} & = F_{\rm vc} \cdot V_{\rm bc} \\ V{\text {b}}_{\rm c} & = {\text {volfrac}}_{\rm c} \cdot V_{\rm c} \\ \end{aligned} $$
$$ \left[ {{\text {P}}_{\rm cv1} {\text {O}}_{2} (t),{\text {O}}_{2} {\text {Hb}}_{\rm cv1} (t)} \right] = f_{{\rm getPO_{2} }} ({\text {O}}_{2} {\text {Hb}}_{\rm ar} (t),{\text {P}}_{50} (t),n(t),{\text {O}}_{2} {\text {Hb}}_{{{ \max }\rm c1}} (t),{\text {S}}_{{{\text {O}}_{2} }} ,{\text {P}}_{\rm ar} {\text {O}}_{2} (t),\dot{Q}_{\rm c} (t)) $$

[See section “Special Functions” (F.4) for description of \( f_{{\rm getPO_{2} }} \)]

$$ \begin{aligned} D{\text {b}}_{\rm c1} {\text {O}}_{2} (t) & = {\frac{{PS_{\rm c1} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \cdot V_{\rm c1} }}{1.04}} \\ PS_{\rm c1} {\text {O}}_{2} (t) & = PS_{\rm cav\_rest} \cdot {\frac{{\dot{Q}_{\rm c} (t)}}{{\dot{Q}_{\rm c0} }}} \\ {\text {COFlux}}_{\rm c1} (t) & = D{\text {b}}_{\rm c1} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a1c} {\text {CO}}(t) - {\text {P}}_{\rm c1} {\text {CO}}(t)} \right) \\ D{\text {b}}_{\rm c1} {\text {CO}}(t) & = D_{\rm c} {\text {CO}}(t) \cdot \left( {{\frac{{D{\text {b}}_{\rm c1} {\text {O}}_{2}(t)}}{{D{\text {b}}_{\rm c2} {\text {O}}_{2}(t)}}}} \right) \\ D_{\rm c} {\text {CO}}(t) & = D_{\rm M} {\text {CO}} \cdot \left( {{\frac{{D{\text {b}}_{\rm c2} {\text {O}}_{2} (t)}}{{D{\text {b}}_{\rm m2} {\text {O}}_{2} (t)}}}} \right) \\ {\text {P}}_{\rm a1c} {\text {CO}}(t) & = 0.5\left( {{\text {P}}_{\rm ar} {\text {CO}}(t) + {\text {P}}_{\rm cv1} {\text {CO}}(t)} \right) \\ {\text {P}}_{\rm cv1} {\text {CO}}(t) & = \left( {{\frac{{{\text {P}}_{\rm cv1} {\text {O}}_{2} (t)}}{{{\text {M}}_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm cv1} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm cv1} (t)}}}} \right) \\ {\text {COHb}}_{\rm cv1} (t) & = C_{\rm cv1} {\text {CO}}(t) - \left( {{\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm cv1} {\text {CO}}(t)} \right) \\ \end{aligned} $$

Auxiliary Equations Cardiac Blood Compartment 2, bc2

$$ \begin{aligned} {\text {O}}_{2} {\text {Flux}}_{\rm c2} (t) & = D{\text {b}}_{\rm c2} {\text {O}}_{2} \cdot \left( {\text {{P}}_{\rm a2c} {\text {O}}_{2} (t) -{\text { P}}_{\rm c2} {\text {O}}_{2} (t)} \right) \\ V_{\rm bc2} & = \left( {1 - F_{\rm vc} } \right) \cdot V_{\rm bc} \\ D{\text {b}}_{\rm c2} {\text {O}}_{2} (t) & = {\frac{{PS_{\rm c2} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \cdot V_{\rm c2} }}{1.04}} \\ PS_{\rm c2} {\text {O}}_{2} (t) & = PS_{\rm ccap\_rest} \cdot {\frac{{\dot{Q}_{\rm c} (t)}}{{\dot{Q}_{\rm c0} }}} \\ {\text {COFlux}}_{\rm c2} (t) & = D{\text {b}}_{\rm c2} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a2c} {\text {CO}}(t) - {\text {P}}_{\rm c2} {\text {CO}}(t)} \right) \\ D{\text {b}}_{\rm c2} {\text {CO}}(t) & = D_{\rm c} {\text {CO}}(t) \\ \end{aligned} $$

All other equations are similar to those of cardiac blood compartment 1.

Auxiliary Equations Cardiac Blood Compartment 3, bc3

$$ \begin{aligned} {\text {O}}_{2} {\text {Flux}}_{\rm c3} (t) & = D{\text {b}}_{\rm c3} {\text {O}}_{2} (t) \cdot \left( {{\text {P}}_{\rm a3c} {\text {O}}_{2} (t) - {\text {P}}_{\rm c1} {\text {O}}_{2} (t)} \right) \\ V_{\rm bc3} & = D_{\rm bvc\_on} \cdot V_{\rm bc1} \\ D{\text {b}}_{\rm c3} {\text {O}}_{2} (t) & = D_{\rm bvc\_on} \cdot D{\text {b}}_{\rm c1} {\text {O}}_{2} (t) \\ {\text {COFlux}}_{\rm c3} (t) & = D_{\rm bc3} {\text {CO}}(t) \cdot \left( {{\text {P}}_{\rm a3c} {\text {CO}}(t) - {\text {P}}_{\rm c1} {\text {CO}}(t)} \right) \\ D{\text {b}}_{\rm c3} {\text {CO}}(t) & = D_{\rm c} {\text {CO}}(t) \cdot \left( {{\frac{{D{\text {b}}_{\rm c3} {\text {O}}_{2} (t)}}{{D{\text {b}}_{\rm c2} {\text {O}}_{2} (t)}}}} \right) \\ \end{aligned} $$

All other equations are similar to those of cardiac blood compartment 1.

Other Tissue Compartment, (ot)

$$ V_{\rm ot} {\frac{{dC_{\rm ot} {\text {O}}_{2} (t)}}{dt}} = {\text {O}}_{2} {\text {flux}}_{\rm ot} (t) - {{MR}}_{\rm ot} {\text {O}}_{2} $$
(B.25)
$$ V_{\rm ot} {\frac{{dC_{\rm ot} {\text {CO}}(t)}}{dt}} = {\text {COflux}}_{\rm ot} (t) $$
(B.26)

Auxiliary Equations for Other Tissue (Nonmuscle) Compartment

$$ \begin{gathered} {{MR}}_{\rm ot} {\text {O}}_{2} = {{MR}{\rm O}}_{2} - \left( {{{MR}}_{\rm m} {\text {O}}_{2} + {{MR}}_{\rm c} {\text {O}}_{2} } \right) \hfill \\ {\text {O}}_{2} {\text {flux}}_{\rm ot} (t) = \left[ {{\text {P}}_{\rm ot\_avg} {\text {O}}_{2} (t) - {\text {P}}_{\rm ot} {\text {O}}_{2} (t)} \right] \cdot D{\text {b}}_{\rm ot} {\text {O}}_{2} \hfill \\ {\text {P}}_{\rm ot\_avg} {\text {O}}_{2} (t) = f_{\rm pinv} \left( {{\text {O}}_{2} {\text {Hb}}_{\rm ot} (t),{\text {P}}_{50} (t),n(t),C_{{{ \max }\rm ot}} (t)} \right) \hfill \\ \end{gathered} $$

[See section “Special Functions” (F.2) for description of f pinv]

$$ \begin{gathered} {\text {O}}_{2} {\text {Hb}}_{\rm ot} (t) = 0.5({\text {O}}_{2} {\text {Hb}}_{\rm ar} (t) + {\text {O}}_{2} {\text {Hb}}_{\rm vot} (t)) \hfill \\ \tau_{\rm ot} {\frac{{d{\text {O}}_{\rm 2} {\text {Hb}}_{\rm vot} (t)}}{dt}} + {\text {O}}_{2} {\text {Hb}}_{\rm vot} (t) = {\text {O}}_{2} {\text {Hb}}_{\rm votun} (t) \hfill \\ \left[ {{\text {P}}_{\rm vot} {\text {O}}_{2} (t),{\text {O}}_{2} {\text {Hb}}_{\rm votun} (t)} \right] = f_{{\rm getPO_{2} }} ({\text {O}}_{2} {\text {Hb}}_{\rm ar} (t),{\text {P}}_{50} (t),n(t),C_{{{ \max }\rm ot}} (t),{\text {S}}_{{\rm O_{2} }} ,{\text {P}}_{\rm ar} {\text {O}}_{2} (t),\dot{Q}_{\rm ot} (t)) \hfill \\ \end{gathered} $$

[See section “Special Functions” (F.4) for description of \( f_{{\rm getPO_{2} }} \)]

$$ \begin{gathered} C_{{{ \max }\rm ot}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}_{\rm vot} (t) \hfill \\ \tau_{\rm ot} {\frac{{d{\text {COHb}}_{\rm vot} (t)}}{dt}} + {\text {COHb}}_{\rm vot} (t) = {\text {COHb}}_{\rm votun} (t) \hfill \\ {\text {COHb}}_{\rm votun} (t) = C_{\rm ar} {\text {CO}}(t) - {\text {S}}_{\rm CO} \cdot {\text {P}}_{\rm vot} {\text {CO}}(t) - {\frac{{{\text {COflux}}_{\rm ot} (t)}}{{\dot{Q}_{\rm ot} (t)}}} \hfill \\ \dot{Q}_{\rm ot} (t) = \dot{Q}(t) - \left( {\dot{Q}_{\rm m} (t) + \dot{Q}_{\rm c} (t)} \right) \hfill \\ {\text {P}}_{\rm vot} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm vot} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm vot} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm vot} (t)}}}} \right) \hfill \\ {\text {COflux}}_{\rm ot} (t) = D{\text {b}}_{\rm ot} {\text {CO}} \cdot \left( {{\text {P}}_{\rm bot} {\text {CO}}(t) - {\text {P}}_{\rm ot} {\text {CO}}(t)} \right) \hfill \\ D{\text {b}}_{\rm ot} {\text {CO}} = D_{\rm M} {\text {CO}} \cdot \left( {{\frac{{V_{\rm ot} }}{{V_{\rm m} }}}} \right) \hfill \\ V_{\rm ot} = V_{\rm m} \cdot \left( {{\frac{{V_{{\rm ot_{0} }} }}{{V_{{\rm m_{0} }} }}}} \right) \hfill \\ {\text {P}}_{\rm bot} {\text {CO}}(t) = 0.5\left( {{\text {P}}_{\rm ar} {\text {CO}}(t) + {\text {P}}_{\rm vot} {\text {CO}}(t)} \right) \hfill \\ {\text {P}}_{\rm ot} {\text {O}}_{2} (t) = {\frac{{C_{\rm ot} {\text {O}}_{2} (t)}}{{{\text {S}}_{{{\text {O}}_{2} }} }}} \hfill \\ C_{\rm vot} {\text {O}}_{2} (t) = {\text {P}}_{\rm vot} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \hfill \\ {\text {P}}_{\rm ot} {\text {CO}}(t) = {\frac{{C_{\rm ot} {\text {CO}}(t)}}{{{\text {S}}_{\rm CO} }}} \hfill \\ C_{\rm vot} {\text {CO}}(t) = {\text {P}}_{\rm vot} {\text {CO}}(t) \cdot {\text {S}}_{\rm CO} \hfill \\ \tau_{\rm ot} = {\frac{{V_{\rm bot} }}{{\dot{Q}_{\rm ot} (t)}}} \hfill \\ V_{\rm bot} = {\text {Volfrac}}_{\rm ot} \cdot V_{\rm ot} \, \hfill \\ \end{gathered} $$

Mixed Venous Blood compartment, (mx)

$$ V_{\rm mx} {\frac{{dC_{\rm mx} {\text {O}}_{2} (t)}}{dt}} = \dot{Q}(t) \cdot \left( {C_{\rm mx\_in} {\text {O}}_{2} (t) - C_{\rm mx} {\text {O}}_{2} (t)} \right) $$
(B.27)
$$ V_{\rm mx} {\frac{{dC_{\rm mx} {\text {CO}}(t)}}{dt}} = \dot{Q}(t) \cdot \left( {C_{\rm mx\_in} {\text {CO}}(t) - C_{\rm mx} {\text {CO}}(t)} \right) $$
(B.28)

Auxiliary Equations for Mixed Venous Compartment

$$ C_{\rm mx\_in} {\text {O}}_{2} (t) = C_{\rm vot} {\text {O}}_{2} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm ot} (t)}}{{\dot{Q}(t)}}}} \right) + C_{\rm mv3} {\text {O}}_{2} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm m} (t)}}{{\dot{Q}(t)}}}} \right) + C_{\rm cv3} {\text {O}}_{2} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm c} (t)}}{{\dot{Q}(t)}}}} \right) $$
$$ \tau_{\rm mx} = {\frac{{{\text{V}}_{\rm mx} }}{{\dot{Q}(t)}}} $$
$$ V_{\rm mx} = 0.75 \cdot \left( {V_{\rm b} - V_{\rm bm} - V_{\rm bot} } \right) $$
$$ {\text {P}}_{\rm mx} {\text {O}}_{2} (t) = f_{\rm imp} \left( {{\text {S}}_{{{\text {O}}_{2} }} ,C_{{{ \max }\rm mx}} (t),{\text {P}}_{50} (t),n(t),C_{\text{mx}} {\text {O}}_{2} (t),V_{\text{mx}} } \right) $$

[See section “Special Functions” (F.3) for description of f imp]

$$ C_{{{ \max }\rm mx}} (t) = {\text {O}}_{2} {\text {Hb}}_{ \max } - {\text {COHb}}_{\rm mx} (t) $$
$$ {\text {COHb}}_{\rm mx} (t) = {\text {COHb}}_{\rm vot} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm ot} (t)}}{{\dot{Q}(t)}}}} \right) + {\text {COHb}}_{\rm mv3} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm m} (t)}}{{\dot{Q}(t)}}}} \right) + {\text {COHb}}_{\rm cv3} (t) \cdot \left( {{\frac{{\dot{Q}_{\rm c} (t)}}{{\dot{Q}(t)}}}} \right) + \left( {{\frac{{\dot{V}{\text {co}}}}{{\dot{Q}(t)}}}} \right) $$
$$ {\text {P}}_{\rm mx} {\text {CO}}(t) = \left( {{\frac{{{\text {P}}_{\rm mx} {\text {O}}_{2} (t)}}{{M_{\rm H} }}}} \right) \cdot \left( {{\frac{{{\text {COHb}}_{\rm mx} (t)}}{{{\text {O}}_{2} {\text {Hb}}_{\rm mx} (t)}}}} \right) $$
$$ {\text {O}}_{2} {\text {Hb}}_{\rm mx} (t) = f_{\rm odc} \left( {{\text {P}}_{\rm mx} {\text {O}}_{2} (t),{\text {P}}_{50} (t),n(t),C_{{{ \max }\rm mx}} (t)} \right) $$

[See section “Special Functions” (F.1) for description of f odc]

$$ C_{\rm mx\_in} CO(t) = C_{\rm vot} {\text {CO}}(t) \cdot \left( {{\frac{{\dot{Q}_{\rm ot} (t)}}{{\dot{Q}(t)}}}} \right) + C_{\rm mv3} {\text {CO}}(t) \cdot \left( {{\frac{{\dot{Q}_{\rm m} (t)}}{{\dot{Q}(t)}}}} \right) + C_{\rm cv3} {\text {CO}}(t) \cdot \left( {{\frac{{\dot{Q}_{\rm c} (t)}}{{\dot{Q}(t)}}}} \right) $$

Special Functions

$$ f_{\rm odc} :{\text {O}}_{2} {\text {Hb}} = f_{\rm odc} \left( {{\text {PO}}_{2} ,{\text {P}}_{50} ,n,C_{ \max } } \right) $$
(F.1)

fodc calculates concentration of O2 bound to hemoglobin, O2Hb (oxyhemoglobin), from the oxygen dissociation curve (ODC) of Hb as \( {\text {O}}_{2} {\text {Hb}} = C_{\max } \cdot \left( {{\frac{{\left( {{\frac{{{\text {PO}}_{2} }}{{{\text {P}}_{50} }}}} \right)^{n} }}{{1 + \left( {{\frac{{{\text {PO}}_{2} }}{{{\text {P}}_{50} }}}} \right)^{n} }}}} \right)\left( {1 + \left( {0.25 + \left( {{\frac{{5{\text {PO}}_{2} }}{{{\text{P}}_{50} }}}} \right)^{3} } \right)^{ - 1} } \right) \) where the values specified for Cmax (Maximum concentration of Hb bound to O2 excluding the Hb bound to CO), P50 (Partial pressure of oxygen at 50% of Hb saturation), and n (Hill exponent for Hb) represent the vascular compartment of interest and are all functions of %COHb(t) (See Appendix B, section “Lung (Alveolar (L) and End-Pulmonary (ep)) Compartments”). The second term in brackets applies only when n > 1.1.

$$ f_{\rm pinv} :{\text {PO}}_{2} = f_{\rm pinv} ({\text {O}}_{2} {\text {Hb}},{\text {P}}_{50} ,n,C_{ \max } ) $$
(F.2)

fpinv calculates blood PO2 (Partial pressure of oxygen) corresponding to a given oxyhemoglobin content as \( \begin{gathered} {\text{P}}^{*} {\text {O}}_{2} = {\text {P}}_{50} \cdot \left( {{\frac{{{\text {O}}_{2} {\text {Hb}}}}{{C_{ \max } - {\text {O}}_{2} {\text {Hb}}}}}} \right)^{{{\frac{1}{n}}}} \hfill \\ \hfill \\ \end{gathered} \) where the values specified for Cmax, P50, and n represent the vascular compartment of interest and are all functions of %COHb(t) (See Appendix B, section “Lung (Alveolar (L) and End-Pulmonary (ep)) Compartments”). If P*O2 < 20 Torr, then \( {\text {PO}}_{2} \, = \, {\frac{{{\text {P}}^{*} {\text {O}}_{2} (t)}}{{1 + \left( {0.25 + \left( {{\frac{{5{\text {P}}^{*} {\text {O}}_{2} }}{{{\text {P}}_{50} }}}} \right)^{3} } \right)^{ - 1} }}} \).

Otherwise, PO2 = P*O2.

$$ f_{\rm imp} :{\text {PO}}_{{2({\text {P}}_{\rm bi} {\text {O}}_{2}\,{\text{or}}\,{\text {P}}_{\rm ti} {\text {O}}{}_{2})}} = f_{\rm imp} \left( {{\text {S}}_{{{\text {O}}_{2} }} ,C_{{\max (C_{{{ \max }\rm bi}}\,{\text{or}}\,{\text {O}}_{2} {\text {Mb}}_{{{ \max }i}} )}} ,{\text {P}}_{50} ,n,C_{{{\text {O}}_{2} (C_{\rm bi} {\text {O}}{}_{2}\,{\text{or}}\,C_{\rm ti} {\text {O}}{}_{2})}} } \right) $$
(F.3)

fimp is an ACSL operator which finds an implicit solution to a nonlinear algebraic equation involving a single unknown variable (in our case, blood \( \left( {{\text {P}}_{{{\text {bi}}}} {\text {O}}_{2} (t)} \right) \) or tissue \( \left( {{\text {P}}_{{\text{t}_{\text{i}} }} {\text {O}}_{2} (t)} \right) \) partial pressure of oxygen). The algebraic expression solved implements the concept that the total concentration of O2\( \left( {C_{{{\text {O}}_{2} }} } \right) \) in a given compartment (blood or tissue) equals to the concentration of O2 dissolved and the concentration of O2 bound to heme protein (Hb or Mb) in that compartment. These expressions are:

For blood compartment “bi”at time “t”:

$$ \left( {{\text {P}}_{\rm bi} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} } \right) + \left( {C_{\max {\rm bi}} (t) \cdot \left[ {{\frac{{\left( {{\frac{{{\text {P}}_{\rm bi} {\text {O}}_{2} (t)}}{{{\text {P}}_{50} (t)}}}} \right)^{n(t)} }}{{1 + \left( {{\frac{{{\text {P}}_{\rm bi} {\text {O}}_{2} (t)}}{{{\text {P}}_{50} (t)}}}} \right)^{n(t)} }}}} \right]} \right) - C_{\rm bi} {\text {O}}{}_{2}(t) \, = \, 0 $$

where \( {\text {P}}_{\rm bi} {\text {O}}_{2} (t),C_{\rm bi} {\text {O}}_{2} (t) \) are the PO2 and O2 concentration in the blood compartment ‘i’

For tissue compartment “ti” at time “t”:

$$ \left( {{\text {P}}_{\rm ti} {\text {O}}_{2} (t) \cdot {\text {S}}_{{{\text {O}}_{2} }} \cdot V_{\rm ti} } \right) + \left( {{\text {O}}_{2} {\text {Mb}}_{\max i} (t) \cdot V_{\rm ti} \cdot \left[ {{\frac{{{\text {P}}_{\rm ti} (\text{O}_{2} (t)}}{{{\text {P}}_{50m} + {\text {P}}_{\rm ti} {\text {O}}_{2} (t)}}}} \right]} \right) - \left( {C_{\rm ti} {\text {O}}_{2}(t) \cdot V_{\rm ti} } \right) = 0 $$

where, \( {\text {P}}_{\rm ti} {\text {O}}_{2} (t),C_{\rm ti} {\text {O}}_{2} (t) \) are the PO2 and O2 concentration in the tissue compartment ‘i’.

$$ f_{{\rm getPO_{2} }} :\left[ {{\text {PO}}_{2} ,{\text {O}}_{2} {\text {Hb}}} \right] = f_{{\rm getPO_{2} }} ({\text {O}}_{2} {\text {Hb}}_{\text{b(in)}} ,{\text {P}}_{50} ,n,{\text{O}}_{2} {\text {Hb}}_{ \max } ,{\text {S}}_{{{\text {O}}_{2} }} ,{\text {P}}_{{\text {b}}(\text{in})} {\text {O}}_{2} ,\dot{Q}_{i} ) $$
(F.4)

\( f_{{\rm getPO_{2} }} \) calculates PbiO2(t) and O2Hbbi(t) in the venous outflow from blood subcompartments of muscle compartment, with inflowing blood described by Pb(in)O2 and O2Hbin, while accounting for tissue exchange of oxygen with blood, oxygen combined with Hb, and oxygen dissolved in plasma. Two (total O2 content, Haldane equation) simultaneous algebraic equations of PO2 are solved iteratively under the constraint that change in total oxygen content of the blood, multiplied by blood flow, must equal the blood-to-tissue oxygen flux (predetermined on the basis of mean partial pressure gradients). \( \dot{Q}_{i} \) is the blood flow to the compartment i.

Total O2 content: \({\text{C}_{{\rm O}_{2}}} = {\frac{{{\text{C}_{{\rm O}_{2(\max )}}} \cdot \left( {{\frac{{{\text {PO}}_{2} }}{{{\text {P}}_{50} }}}} \right)^{n} }}{{1 + \left( {{\frac{{{\text {PO}}_{2} }}{{{\text {P}}_{50} }}}} \right)^{n} }}} + {\text {S}}_{{{\text {O}}_{2} }} \cdot {\text{PO}}_{2};\)

Haldane equation: \( {\frac{{M_{{\text {H}}} \cdot {\text {PCO}}}}{{\text {COHb}}}} = {\frac{{{\text {PO}}_{2} }}{{{\text {O}}_{2} {\text {Hb}}}}} \)

A gradient search method is used. The iterations terminate when a solution for PO2 is reached within the limits of a specified tolerance (0.01 Torr). An error flag is set if the maximum iteration number (10,000) is reached. O2Hb is calculated from the determined PO2 using the f odc function.

$$ f_{\rm getPavg} :{\text {P}}_{{\rm avgi}} = f_{\rm getPavg} \left( {{\text {O}}_{2} {\text {Hb}}_{\max \text{i}} ,V{\text {b}}_{\rm i} ,{\text {P}}_{50} ,n,C_{{\rm iav}} {\text {O}}_{2} ,{\text {S}}_{{{\text {O}}_{2} }} ,{\text {P}}_{\rm b(i - 1)} {\text {O}}_{2} ,{\text {P}}_{\rm bi} {\text {O}}_{2} } \right) $$
(F.5)

fgetPavg calculates average vascular PO2, Pavgi(t), in the blood subcompartments of the tissue. Pavgi(t) is the partial pressure of O2 corresponding to the concentration of O2, CiavO2(t), halfway between the inlet (subscript “i − 1”) and outlet (subscript “i”) concentrations of the vascular subcompartment ‘i’. Pavgi(t) takes into account O2 dissolved as well as O2 bound to hemoglobin. A dichotomous search method is used to determine Pavgi(t). Vbi is the volume of blood in compartment i.

Appendix C: Parameter Estimates Based On Regression Equations

Eqs. (C.3) to (C.4) and Eq. (C.6) are used to estimate parameter values only when their values are not provided by the experimental study being simulated.

This section contains the regression equations used in the model to estimate certain parameter values, when those values are not reported in the experimental studies.

Volume of muscle tissue, V m (mL):

$$ V_{\text{m}} = \left[ {1000\left( {0.244\,BW + 7.80\,HT + 6.6G - 0.098\,A - 3.3} \right)} \right]/1.04 $$
(C.1)
$$ V_{{{\text{m}}\_{\text{obese}}}} = \left( {V_{\text{m}} - 8706.9} \right)/0.805 $$

BW = Body Weight in kg; HT = Height in cm; G = 0: Female; 1: Male; A = Age in years

  • Volume of leg muscle tissue, V lm (ml):

    $$ {\text {For Male,}} \, V_{\text {lm}}=0.4663(V_{\rm m}); \, {\text {For Female,}} \, V_{\text {lm}}=0.4953(V_{\rm m}) $$
    (C.1.1)
  • Volume of arm muscle tissue, V am (ml):

    $$ {\text {For Male,}} \, V_{\text {am}}=(0.1564*V_{\rm m}); \, {\text {For Female,}} \, V_{\text {am}}=(0.1396 * V_{\rm m})$$
    (C.1.2)
  • Volume of trunk muscle tissue, V tm (ml):

    $$ {\text {For Male,}} \, V_{\text {tm}}=(0.3773 * V_{\rm m}); \, {\text {For Female,}} \, V_{\text {tm}} = (0.3651 * V_{\rm m}) $$
    (C.1.3)

Total body volume of blood, V b (mL):

$$ V_{\rm b} = 70\left( {\sqrt {{\frac{BMI\_p}{{22(HT)^{2} }}}} } \right)^{ - 1} $$
(C.2)
$$ BMI\_p = \left( {{\frac{delta\_IBW}{100}}} \right)22 + 22 $$
$$ {\text{delta}}\_IBW = \left( {{\frac{BMI}{22}}} \right)100 $$
$$ BMI = {\frac{BW}{{(HT)^{2} }}} $$

Cardiac Output, \( \dot{Q}_{0} \) (L/min):

$$ \dot{Q}_{0} = (54.1 + 7.9G) \cdot BW + 1400 - 200 \cdot G $$
(C.3)

During exercise;

$$ \dot{Q}_{0} = 3. 1 8 6 + 7. 3 4 6\left( {{{MR}{\rm O}}_{ 2} } \right) - 0. 5 3 5\left( {{{MR}{\rm O}}_{ 2} } \right)^{ 2} $$
(C.4)

MRO2 = Total Body Metabolic Rate in STPD, L/min

The changes in cardiac output \( \left( {\dot{Q}} \right) \) with CO exposure were implemented in our previous model.8 Our objective in this study was to simulate changes in \( \dot{Q} \) in response to physical activity. In order to account for change in cardiac output with physical activity, we developed a predictive equation for estimating cardiac output, \( \dot{Q}, \) as a function of total body oxygen consumption, MRO2. Rest and exercise data for cardiac output and MRO2 from various published papers3,4,6,18,21,34,37,72 from human subjects are shown in Fig. 14. The developed prediction equation, based on a nonlinear, least squares polynomial fit, is Eq. (C.4). Cardiac output was measured either by dye dilution, transthoracic electric bioimpedance, or Fick’s method. The data were obtained from healthy, non-smoking, untrained individual subjects. As shown in Fig. 14, cardiac output reaches a plateau as maximal body O2 consumption is reached. Eq. (C.3) was used in simulation of Burge and Skinner 11 and Eq. (C.4) was not used in any of the simulations of the manuscript.

Figure 14
figure 14

Cardiac output (\( \dot{Q}\)) vs. body oxygen consumption (MRO2). The data (○) used to build the relationship3,4,6,18,21,34,37,72 and the regression line. The regression equation is given by \( \dot{Q} = 3.186 \, + 7.346\left( {{{MR}{\rm O}}_{2} } \right) - 0.535\left( {{{MR}{\rm O}}_{2} } \right)^{2}. \) See Appendix C for details

Percent change in Cardiac Output with CO exposure:

$$ \% \Updelta \dot{Q} = 0.572 \, \left( { \, \% {\text{COHb}}} \right) $$
(C.5)

Heart Rate, HR (beats/min):

$$ {{HR}} = 42.819 + 68.884\left( {{{MR}{\rm O}}_{2} } \right) - 8.26\left( {{{MR}{\rm O}}_{2} } \right)^{2} $$
(C.6)

In our enhanced model, MBF and MOC for the cardiac compartment were estimated from heart rate. In order to develop a predictive equation for estimating HR, we collected data from the literature14,50,83 for HR and total body metabolic rate of human subjects during rest and exercise. The polynomial fit to experimental data (Fig. 15) is Eq. (C.6). In most of our simulations, HR was provided to us by the investigators. However, in experiments where heart rate was not measured, it was estimated from the prediction equation. An heart rate of 66 beats/min was assumed for simulations7,11 when MRO2 was not measured.

Figure 15
figure 15

Heart rate (HR) vs. body oxygen consumption (MRO2). The data (○) used to build the relationship.14,50,83 The regression equation is given by \( {{HR}} = 42.819 + 68.884\left( {{{MR}{\rm O}}_{2} } \right) - 8.26 \, \left( {{{MR}{\rm O}}_{2} } \right)^{2}. \) See Appendix C for details

Myocardial Blood Flow, MBF (mL min−1g−1):

$$ \text{MBF} = 2.18(HR) - 27.3 $$
(C.7)

Myocardial Oxygen Consumption, MOC ( mL min −1 g −1 ):

$$ \text{MOC} = {\frac{46.6}{{1 + \left( {{\frac{122.7}{HR}}} \right)^{4.85} }}} + 9.76 $$
(C.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erupaka, K., Bruce, E.N. & Bruce, M.C. Prediction of Extravascular Burden of Carbon Monoxide (CO) in the Human Heart. Ann Biomed Eng 38, 403–438 (2010). https://doi.org/10.1007/s10439-009-9814-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9814-y

Keywords

Navigation