Skip to main content
Log in

Entropic force between biomembranes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Undulation force, an entropic force, stems from thermally excited fluctuations, and plays a key role in the essential interactions between neighboring surfaces of objects. Although the characteristics of the undulation force have been widely studied theoretically and experimentally, the distance dependence of the force, which constitutes its most fundamental characteristic, remains poorly understood. In this paper, first, we obtain a novel expression for the undulation force by employing elasticity and statistical mechanics and prove it to be in good agreement with existing experimental results. Second, we clearly demonstrate that the two representative forms of the undulation force proposed by Helfrich and Freund were respectively the upper and lower bounds of the present expression when the separation between membranes is sufficiently small, which was intrinsically different from the existing results where Helfrich’s and Freund’s forms of the undulation force were only suitable for the intermediate and small separations. The investigations show that only in a sufficiently small separation does Helfrich’s result stand for the undulation force with a large wave number and Freund’s result express the force with a small wave number. Finally, a critical acting distance of the undulation force, beyond which the entropic force will rapidly decay approaching zero, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Israelachvili, J.N., Wennerström, H.J.: Entropic forces between amphiphilic surfaces in liquids. Chem. Phys. 96, 520–531 (1992)

    Article  Google Scholar 

  2. Sharma, P.: Entropic force between membranes reexamined. Proc. Natl. Acad. Sci. USA 110, 1976–1977 (2013)

    Article  Google Scholar 

  3. Lin, Y., Freund, L.B.: An lower bound on receptor density for stable cell adhesion due to thermal undulations. J. Mater. Sci. 42, 8904–8910 (2007)

    Article  Google Scholar 

  4. Yin, Y.J., Chen, Y.Q., Ni, D., et al.: Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. J. Biomech. 38, 1433–1440 (2005)

    Article  Google Scholar 

  5. Xu, G.K., Feng, X.Q., Zhao, H.P., et al.: Theoretical study on the competition between cell-cell and cell-matrix adhesions. Phys. Rev. E 80, 011921 (2009)

    Article  Google Scholar 

  6. Zhong, Y., Ji, B.H.: How do cells produce and regulate the driving force in the process of migration? Eur. Phys. J. Spec. Top. 223, 1373–1390 (2014)

    Article  Google Scholar 

  7. Lindahl, E., Edholm, O.: Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79, 426–433 (2000)

    Article  Google Scholar 

  8. Merath, R.J., Seifert, U.: Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate. Phys. Rev. E 73, 010401(R) (2006)

    Article  Google Scholar 

  9. Ho, I.L.: Fluctuation-induced non-equilibrium transition in a liquid-crystal metastable system. Phys. A 391, 1952–1962 (2012)

    Article  Google Scholar 

  10. Loudet, J.C., Dolganov, P.V., Patrício, P., et al.: Undulation instabilities in the meniscus of smectic membranes. Phys. Rev. Lett. 106, 117802 (2011)

    Article  Google Scholar 

  11. Safinya, C.R., Roux, D., Smith, G.S., et al.: Steric interactions in a model multimembrane system: a synchrotron X-ray study. Phys. Rev. Lett. 57, 2718–2721 (1986)

    Article  Google Scholar 

  12. Beales, P.A., Vanderlick, T.K.: DNA as membrane-bound ligand-receptor pairs: duplex stability is tuned by intermembrane forces. Biophys. J. 96, 1554–1565 (2009)

    Article  Google Scholar 

  13. Bouglet, G., Ligoure, C.: Polymer-mediated interactions of fluid membranes in a lyotropic lamellar phase: a small angle X-ray and neutron scattering study. Eur. Phys. J. B 9, 137–147 (1999)

    Article  Google Scholar 

  14. Giahi, A., Faris, M.E.A., Bassereau, P., et al.: Active membranes studied by X-ray scattering. Eur. Phys. J. E 23, 431–437 (2007)

    Article  Google Scholar 

  15. West, B., Schmid, F.: Fluctuations and elastic properties of lipid membranes in the gel \({L_{\beta ^{\prime }}}\), state: a coarse-grained Monte Carlo study. Soft Matter. 6, 1275–1280 (2010)

    Article  Google Scholar 

  16. Wei, Y.J., Wang, B.L., Wu, J.T., et al.: Bending rigidity and gaussian bending stiffness of single-layered grapheme. Nano Lett. 13, 26–30 (2013)

    Article  Google Scholar 

  17. Du, F., Duan, H.L., Xiong, C.Y., et al.: Substrate wettability requirement for the direct transfer of graphene. Appl. Phys. Lett. 107, 143109 (2015)

    Article  Google Scholar 

  18. Xu, G.K., Hu, J.L., Lipowsky, R., et al.: Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations. J. Chem. Phys. 143, 243136 (2015)

    Article  Google Scholar 

  19. Xu, G.K., Feng, X.Q., Li, Y.: Self-assembled nanostructures of homopolymer and diblock copolymer blends in a selective solvent. J. Phys. Chem. B 114, 1257–1263 (2010)

    Article  Google Scholar 

  20. Helfrich, W.: Steric interaction of fluid membranes in multilayer systems. Z. Naturforsch. Sect. A 33, 305–315 (1978)

    Google Scholar 

  21. Helfrich, W., Servuss, R.-M.: Undulation, steric interaction and cohesion of fluid membranes. Il. Nuovo. Cimento. D 3, 137–151 (1984)

    Article  Google Scholar 

  22. Kleinert, H.: Fluctuation pressure of membrane between walls. Phys. Lett. A 257, 269–274 (1999)

    Article  Google Scholar 

  23. Kastening, B.: Fluctuation pressure of a membrane between walls through five loops. Phys. Rev. E 66, 061102 (2002)

    Article  Google Scholar 

  24. Kastening, B.: Fluctuation pressure of a fluid membrane between walls through six loops. Phys. Rev. E 73, 011101 (2006)

    Article  Google Scholar 

  25. Bachmann, M., Kleinert, H., Pelster, A.: Strong-coupling calculation of fluctuation pressure of a membrane between walls. Phys. Lett. A 261, 127–133 (1999)

    Article  Google Scholar 

  26. Bulut, S., Åslund, I., Topgaard, D., et al.: Lamellar phase separation in a centrifugal field. A method for measuring interbilayer forces. Soft Matter. 6, 4520–4527 (2010)

  27. Janke, W., Kleinert, H.: Fluctuation pressure of membrane between walls. Phys. Lett. A 117, 353–357 (1986)

    Article  Google Scholar 

  28. Gompper, G., Kroll, D.: Steric interactions in multimembrane systems: a Monte Carlo study. Europhys. Lett. 9, 59–64 (1989)

    Article  Google Scholar 

  29. Freund, L.B.: Entropic pressure between biomembranes in a periodic stack due to thermal fluctuations. Proc. Natl. Acad. Sci. USA 110, 2047–2051 (2013)

    Article  Google Scholar 

  30. Wennerström, H., Olsson, U., Israelachvili, J.N.: Entropic force between fluid layers. Proc. Natl. Acad. Sci. USA 110, E2944 (2013)

    Article  Google Scholar 

  31. Freund, L.B.: Reply to Wennerström et al.: Entropic forces on a confined membrane. Proc. Natl. Acad. Sci. USA 110, E2945 (2013)

    Article  Google Scholar 

  32. Auth, T., Gompper, G.: Fluctuation pressure of biomembranes in planar confinement. Phys. Rev. E 88, 010701(R) (2013)

    Article  Google Scholar 

  33. Hanlumyuang, Y., Liu, L.P., Sharma, P.: Revisiting the entropic force between fluctuating biological membranes. J. Mech. Phys. Solids. 63, 179–186 (2013)

    Article  Google Scholar 

  34. Wennerström, H., Olsson, U.: The undulation force; theoretical results versus experimental demonstrations. Adv. Colloid. Interface. Sci. 208, 10–13 (2014)

    Article  Google Scholar 

  35. Freund, L.B.: Fluctuation pressure on a bio-membrane confined within a parabolic potential well. Acta Mech. Sin. 28, 1180–1185 (2012)

    Article  MATH  Google Scholar 

  36. Gosselin, P., Mohrbach, H., Müller, M.M.: Interface-mediated interactions: entropic forces of curved membranes. Phys. Rev. E 83, 051921 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the programs in the National Natural Science Foundation of China (Grants 11232013 and 11472285). L. Li thanks L.B. Freund and R. Lipowsky for insightful discussions. F. Song is very grateful to Y.L. Bai of State Key Laboratory of Nonlinear Mechanics and F.J. Ke of Beijing University of Aeronautics and Astronautics for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Song, F. Entropic force between biomembranes. Acta Mech. Sin. 32, 970–975 (2016). https://doi.org/10.1007/s10409-016-0588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0588-9

Keywords

Navigation