Skip to main content
Log in

Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Significant progress has been made in mixed boundary-value problems associated with three-dimensional (3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials. These include material anisotropy and multifield coupling, two typical characteristics of most current multifunctional materials. In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V. I. Fabrikant, whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory. We are particularly interested in crack and contact problems with certain nonlinear features. Emphasis is also placed on the coupling between the temperature field (or the like) and other physical fields (e.g., elastic, electric, and magnetic fields). We further highlight the practical significance of 3D contact solutions, in particular in applications related to modern scanning probe microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005)

    Article  MATH  Google Scholar 

  2. Brelot, M.: Potential Theory. Springer, Berlin (2010)

  3. Kellogg, O.D.: Foundations of Potential Theory. Dover, Berlin (1929)

    Book  MATH  Google Scholar 

  4. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  5. Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam (1966)

    MATH  Google Scholar 

  6. Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969)

    MATH  Google Scholar 

  7. Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selection of New Results. Kluwer, Dordrecht (1989)

    MATH  Google Scholar 

  8. Fabrikant, V.I.: Mixed Boundary Value Problem of Potential Theory and Their Applications in Engineering. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  9. Fabrikant, V.I.: Crack and Contact Problems in Linear Theory of Elasticity. Bentham Science Publishers, Sharjah (2010)

    Google Scholar 

  10. Chen, W.Q., Ding, H.J.: Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey. J. Zhejiang Univ. Sci. 5, 1009–1021 (2004)

    Article  Google Scholar 

  11. Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transversely isotropy. J. Tribol. 114, 606–611 (1992)

    Article  Google Scholar 

  12. Yong, Z., Hanson, M.T.: Three-dimensional crack and contact problems with a general geometric configuration. Int. J. Solids Struct. 31, 215–239 (1994)

    Article  MATH  Google Scholar 

  13. Chen, W.Q., Ding, H.J.: A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems. Acta Mech. Sin. 15, 52–58 (1999)

    Article  Google Scholar 

  14. Chen, W.Q., Ding, H.J.: Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mech. Solida Sin. 12, 114–120 (1999)

    Google Scholar 

  15. Chen, W.Q.: On piezoelastic contact problem for a smooth punch. Int. J. Solids Struct. 37, 2331–2340 (2000)

    Article  MATH  Google Scholar 

  16. Kalinin, S.V., Karapetian, E., Kachanov, M.: Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70, 184101 (2004)

    Article  Google Scholar 

  17. Karapetian, E., Kachanov, M., Kalinin, S.V.: Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philos. Mag. 85, 1017–1051 (2005)

    Article  Google Scholar 

  18. Pan, E., Chen, W.Q.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York (2015)

    MATH  Google Scholar 

  19. Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)

    Article  Google Scholar 

  20. Ding, H.J., Chen, W.Q., Zhang, L.C.: Elasticity of Transversely Isotropic Materials. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  21. Ding, H.J., Chen, W.Q.: Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York (2001)

    Google Scholar 

  22. Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33, 2283–2298 (1996)

    Article  MATH  Google Scholar 

  23. Chen, W.Q.: On the application of potential theory in piezoelasticity. J. Appl. Mech. 66, 808–810 (1999)

    Article  Google Scholar 

  24. Chen, W.Q., Lee, K.Y., Ding, H.J.: General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int. J. Eng. Sci. 42, 1361–1379 (2004)

    Article  MATH  Google Scholar 

  25. Ding, H.J., Chen, B., Liang, J.: On the Green’s functions for two-phase transversely isotropic piezoelectric media. Int. J. Solids Struct. 34, 3041–3057 (1997)

    Article  MATH  Google Scholar 

  26. Chen, W.Q., Lim, C.W.: 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium. Int. J. Fract. 131, 231–246 (2005)

    Article  MATH  Google Scholar 

  27. Gao, C.F., Wang, M.Z.: Generalized 2D problem of piezoelectric media containing collinear cracks. Acta Mech. Sin. 15, 235–244 (1999)

    Article  Google Scholar 

  28. Qi, H., Fang, D.N., Yao, Z.H.: Analysis of electric boundary condition effects on crack propagation in piezoelectric ceramics. Acta Mech. Sin. 17, 59–70 (2001)

    Article  Google Scholar 

  29. Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)

    Article  Google Scholar 

  30. Huang, Z.Y., Kuang, Z.B.: A mixed electric boundary value problem for an anti-plane piezoelectric crack. Acta Mech. Solida Sin. 16, 110–115 (2003)

    Google Scholar 

  31. Wang, B.L., Han, J.C., Du, S.Y.: Applicability of the crack face electrical boundary conditions in piezoelectric mechanics. Acta Mech. Solida Sin. 17, 290–296 (2004)

    Google Scholar 

  32. Li, F.X., Sun, Y., Rajapakse, R.K.N.D.: Effect of electric boundary conditions on crack propagation in ferroelectric ceramics. Acta Mech. Sin. 30, 153–160 (2014)

    Article  MathSciNet  Google Scholar 

  33. Zhang, T.Y., Tong, P.: Fracture mechanics for a mode-III crack in a piezoelectric material. Int. J. Solids Struct. 33, 343–359 (1996)

    Article  MATH  Google Scholar 

  34. Benveniste, Y.: On the decay of end effects in conduction phenomena: A sandwich strip with imperfect interfaces of low or high conductivity. J. Appl. Phys. 86, 1273–1279 (1999)

    Article  Google Scholar 

  35. Chen, W.Q., Shioya, T.: Fundamental solution for a penny-shaped crack in a piezoelectric medium. J. Mech. Phys. Solids 47, 1459–1475 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, X.F., Lee, K.Y.: Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack. J. Appl. Mech. 71, 866–878 (2005)

    Article  MATH  Google Scholar 

  37. Li, X.F., Lee, K.Y.: Electro-elastic behavior induced by an external circular crack in a piezoelectric material. Int. J. Fract. 126, 17–38 (2004)

    Article  MATH  Google Scholar 

  38. Li, X.Y.: Fundamental electro-elastic field in an infinite transversely isotropic piezoelectric medium with a permeable external circular crack. Smart Mater. Struct. 21, 065019 (2012)

    Article  Google Scholar 

  39. Chen, W.Q.: Exact solution of a semi-infinite crack in an infinite piezoelectric body. Arch. Appl. Mech. 69, 309–316 (1999)

    Article  MATH  Google Scholar 

  40. Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58, 1524–1551 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, W.Q., Shioya, T., Ding, H.J.: The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. J. Appl. Mech. 66, 764–771 (1999)

    Article  Google Scholar 

  42. Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)

    Article  Google Scholar 

  43. Beom, H.G., Atluri, S.N.: Effect of electric fields on fracture behavior of ferroelectric ceramics. J. Mech. Phys. Solids 51, 1107–1125 (2003)

    Article  MATH  Google Scholar 

  44. Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)

    Article  MATH  Google Scholar 

  45. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  46. Li, X.Y., Yang, D., Chen, W.Q., Kang, G.Z.: Penny-shaped Dugdale crack in a transversely isotropic medium. Int. J. Fract. 176, 207–214 (2012)

    Article  Google Scholar 

  47. Li, X.Y., Guo, S.T., He, Q.C., Chen, W.Q.: Penny-shaped Dugdale crack in a transversely isotropic medium and under axisymmetric loading. Mech. Math. Solids 18, 246–263 (2013)

    Article  Google Scholar 

  48. Zhao, M.H., Shen, Y.P., Liu, G.N., Liu, Y.J.: Dugdale model solutions for a penny-shaped crack in three-dimensional transversely isotropic piezoelectric media by boundary-integral equation method. Eng. Anal. Bound. Elem. 23, 573–576 (1999)

    Article  MATH  Google Scholar 

  49. Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  50. Chen, S.H., Gao, H.J.: Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. Solids 55, 1001–1015 (2005)

    Article  MATH  Google Scholar 

  51. Wu, J., Kim, S., Carlson, A., Lu, C.F., Hwang, K.C., Huang, Y.G., Rogers, J.A.: Contact radius of stamps in reversible adhesion. Theor. Appl. Mech. Lett. 1, 011001 (2011)

    Article  Google Scholar 

  52. Wang, J.Z., Yao, J.Y., Gao, H.J.: Specific adhesion of a soft elastic body on a wavy surface. Theor. Appl. Mech. Lett. 2, 014002 (2012)

    Article  Google Scholar 

  53. Chen, Z.R., Yu, S.W.: Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space. Compos. Sci. Technol. 65, 1372–1381 (2005)

  54. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  55. Chen, W.Q.: Adhesive contact between a rigid indenter and a piezoelectric half-space. In: Yang, W., Feng, X.Q., Qin, Q.H. (eds.) Advances in Damage, Fracture and Nanomechanics, pp. 58–65. Tsinghua University Press, Beijing (2009). (in Chinese)

    Google Scholar 

  56. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  Google Scholar 

  57. Borodich, F.M., Galanov, B.A., Keer, L.M., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 33–44 (2014)

    Article  Google Scholar 

  58. Bui, H.D.: An integral equations method for solving the problem of a plane crack of arbitrary shape. J. Mech. Phys. Solids 25, 29–39 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vlassak, J.J., Ciavarella, M., Barber, J.R., Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701–1721 (2003)

    Article  MATH  Google Scholar 

  60. Wang, B.: Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. Int. J. Eng. Sci. 30, 781–791 (1992)

    Article  MATH  Google Scholar 

  61. Fabrikant, V.I., Rubin, B.S., Karapetian, E.N.: Half-plane crack under normal load: complete solution. J. Eng. Mech. 119, 2238–2251 (1993)

    Article  MATH  Google Scholar 

  62. Huang, Z.Y., Bao, R.H., Bian, Z.G.: The potential theory method for a half-plane crack and contact problems of piezoelectric materials. Compos. Struct. 78, 596–601 (2007)

    Article  Google Scholar 

  63. Fabrikant, V.I., Karapetian, E.N.: Elementary exact method for solving boundary-value problems of potential theory with application to half-plane crack and contact problems. Q. J. Mech. Appl. Math. 47, 159–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang, N., Gao, C.F., Jiang, Q.: Solution of a flat elliptical crack in an electrostrictive solid. Int. J. Solids Struct. 51, 786–793 (2014)

    Article  Google Scholar 

  65. Zhao, M.H., Zhang, Q.Y., Pan, E., Fan, C.Y.: Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium. Eng. Fract. Mech. 131, 627–642 (2014)

    Article  Google Scholar 

  66. Kassir, M.K., Sih, G.C.: Three-Dimensional Crack Problems. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  67. Nuller, B., Karapetian, E., Kachanov, M.: On the stress intensity factor for the elliptical crack. Int. J. Fract. 92, L17–L20 (1998)

    Article  Google Scholar 

  68. Fabrikant, V.I.: The stress intensity factor for an external elliptical crack. Int. J. Solids Struct. 23, 465–467 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  69. Hanson, M.T., Puja, I.W.: The elastic field resulting from elliptical Hertzian contact of transversely isotropic bodies: closed form solutions for normal and shear loading. J. Appl. Mech. 64, 457–465 (1997)

    Article  MATH  Google Scholar 

  70. Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for elliptical contact for transversely isotropic piezoelectric bodies. J. Appl. Mech. 66, 560–562 (1999)

    Article  Google Scholar 

  71. Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids Struct. 37, 3201–3229 (2000)

    Article  MATH  Google Scholar 

  72. Fabrikant, V.I.: A new symbolism for solving the Hertz contact problem. Q. J. Mech. Appl. Math. 58, 367–381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  73. Dyson, F.W.: The potentials of ellipsoids of variable densities. Q. J. Pure Appl. Math. Oxford Ser. 25, 259–288 (1891)

    MATH  Google Scholar 

  74. Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space: Part I. J. Appl. Mech. 66, 612–620 (1999)

    Article  Google Scholar 

  75. Fabrikant, V.I.: Utilization of divergent integrals and a new symbolism in crack and contact analysis. IMA J. Appl. Math. 72, 180–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Li, X.Y., Wu, F., Jin, X., Chen, W.Q.: 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. J. Mech. Phys. Solids 75, 1–44 (2015)

  77. Lü, C.F., Chen, W., Zhou, J.X., Qu, S.X., Chen, W.Q.: Editorial: mechanics of soft materials, structures and systems. Theor. Appl. Mech. Lett. 3, 054001 (2013)

    Article  Google Scholar 

  78. Shi, W.D., Feng, X.Q., Gao, H.J.: Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech. Sin. 22, 529–535 (2006)

    Article  MATH  Google Scholar 

  79. Peng, X.L., Huang, J.Y., Qin, L., Xiong, C.Y., Fang, J.: A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech. Sin. 25, 565–570 (2009)

    Article  Google Scholar 

  80. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Article  Google Scholar 

  81. Dorfmann, A., Ogden, R.W.: Nonlinear electroelastic deformations. J. Elasticity 82, 99–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  82. Dorfmann, A., Ogden, R.W.: Nonlinear electroelastostatics: incremental equations and stability. Int. J. Eng. Sci. 48, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang, W.L., Qian, J., Chen, W.Q.: Indentation of a compressible soft electroactive half-space: some theoretical aspects. Acta Mech. Sin. 28, 1133–1142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  84. Chen, W.Q., Dai, H.H.: Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mech. Solida Sin. 25, 530–541 (2012)

    Article  Google Scholar 

  85. Chen, W.Q.: The renaissance of continuum mechanics. J. Zhejiang Univ. Sci. A 15, 231–240 (2014)

    Article  Google Scholar 

  86. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  87. Ma, J., Hu, J., Li, Z., Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)

    Article  Google Scholar 

  88. Wang, X., Shen, Y.P.: The general solution of three-dimensional problems in magnetoelectroelastic media. Int. J. Eng. Sci. 40, 1069–1080 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  89. Liu, J.X., Liu, X.G., Zhao, Y.B.: Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39, 1405–1418 (2001)

    Article  MATH  Google Scholar 

  90. Du, J.K., Shen, Y.P., Gao, B.: Scattering of anti-plane shear waves by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Appl. Math. Mech. Eng. Ed. 25, 1344–1353 (2004)

    Article  MATH  Google Scholar 

  91. Zhou, Z.G., Wang, B.: Dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane waves. Appl. Math. Mech. Eng. Ed. 27, 583–591 (2006)

    Article  MATH  Google Scholar 

  92. Zhang, P.W., Zhou, Z.G., Wang, B.: Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/ piezomagnetic material strips. Appl. Math. Mech. Eng. Ed. 28, 615–625 (2007)

    Article  MATH  Google Scholar 

  93. Feng, W.J., Nie, H., Han, X.: A penny-shaped crack in a magnetoelectroelastic layer under radial shear impact loading. Acta Mech. Solida Sin. 20, 275–282 (2007)

    Article  Google Scholar 

  94. Fan, C.Y., Zhou, Y.H., Wang, H., Zhao, M.H.: Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech. Solida Sin. 22, 232–239 (2009)

    Article  Google Scholar 

  95. Pan, S.D., Zhou, Z.G., Wu, L.Z.: Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane. Appl. Math. Mech. Eng. Ed. 34, 1201–1224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  96. Tang, Y.L., Zhou, Z.G., Wu, L.Z.: The basic solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material. Acta Mech. Solida Sin. 26, 403–418 (2013)

    Article  Google Scholar 

  97. Chen, W.Q.: Exact 3D thermoelastic solutions for a penny-shaped crack in an infinite magnetoelectric medium. Trans. Nanjing Univ. Aeronaut. Astronaut. 31, 109–117 (2014)

    Google Scholar 

  98. Gao, C.F., Kessler, H., Balke, H.: Fracture analysis of electromagnetic thermoelastic solids. Eur. J. Mech. A Solids 22, 433–442 (2003)

    Article  MATH  Google Scholar 

  99. Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mech. Sin. 22, 233–242 (2006)

    Article  MATH  Google Scholar 

  100. Zhao, M.H., Yang, F., Liu, T.: Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86, 4397–4416 (2006)

    Article  Google Scholar 

  101. Hou, P.F., Leung, A.Y.T., Ding, H.J.: The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. Int. J. Solids Struct. 40, 2833–2850 (2003)

    Article  MATH  Google Scholar 

  102. Li, X.Y., Zheng, R.F., Chen, W.Q.: Fundamental solutions to contact problems of a magneto-electro-elastic half-space indented by a semi-infinite punch. Int. J. Solids Struct. 51, 164–178 (2014)

    Article  Google Scholar 

  103. Rogowski, B., Kaliński, W.: Indentation of piezoelectromagneto-elastic half- space by a truncated conical punch. Int. J. Eng. Sci. 60, 77–93 (2012)

    Article  MathSciNet  Google Scholar 

  104. Wang, H.M., Pan, E., Sangghaleh, A., Wang, R., Han, X.: Circular loadings on the surface of an anisotropic and magnetoelectroelastic half-space. Smart Mater. Struct. 21, 075003 (2012)

    Article  Google Scholar 

  105. Zhou, Y.T., Lee, K.Y.: Theory of sliding contact for multiferroic materials indented by a rigid punch. Int. J. Mech. Sci. 66, 156–167 (2013)

    Article  Google Scholar 

  106. Elloumia, R., Guler, M.A., Kallel-Kamoun, I., El-Borgi, S.: Closed-form solutions of the frictional sliding contact problem for a magneto-electro-elastic half-plane indented by a rigid conducting punch. Int. J. Solids Struct. 50, 3778–3792 (2013)

    Article  Google Scholar 

  107. Zhou, Y.T., Zhong, Z.: Frictional indentation of anisotropic magneto-electro- elastic materials by a rigid indenter. J. Appl. Mech. 81, 071001 (2014)

    Article  Google Scholar 

  108. Suck, J.B., Schreiber, M., Häussler, P.: Quasicrystals: An Introduction to Structure, Physical Properties and Applications. Springer, Berlin (2010)

  109. Dubois, J.M.: Useful Quasicrystals. World Scientific, Singapore (2005)

    Book  Google Scholar 

  110. Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  111. Guo, L.H., Fan, T.Y.: Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals. Appl. Math. Mech. Eng. Ed. 28, 1061–1070 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  112. Guo, Y.C., Fan, T.Y.: A mode- II Griffith crack in decagonal quasicrystals. Appl. Math. Mech. Eng. Ed. 22, 1311–1317 (2001)

    Article  MATH  Google Scholar 

  113. Fan, T.Y., Tang, Z.Y., Chen, W.Q.: Theory of linear, nonlinear and dynamic fracture for quasicrystals. Eng. Fract. Mech. 82, 185–194 (2012)

    Article  Google Scholar 

  114. Zhou, W.M., Fan, T.Y.: Axisymmetric elasticity problem of cubic quasicrystal. Chin. Phys. 9, 294–303 (2000)

    Article  Google Scholar 

  115. Zhou, W.M., Fan, T.Y., Yin, S.Y.: Crack problem under shear loading in cubic quasicrystal. Appl. Math. Mech. Eng. Ed. 24, 720–726 (2003)

    Article  MATH  Google Scholar 

  116. Zhou, W.M., Fan, T.Y., Yin, S.Y.: Axisymmetric contact problem of cubic quasicrystalline materials. Acta Mech. Solida Sin. 15, 68–74 (2002)

    Google Scholar 

  117. Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31, 633–641 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  118. Wang, X.: The general solution of one-dimensional hexagonal quasicrystal. Mech. Res. Commun. 33, 576–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  119. Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Eur. Phys. J. B 21, 39–44 (2001)

    Article  Google Scholar 

  120. Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  121. Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philos. Mag. 93, 858–882 (2013)

    Article  Google Scholar 

  122. Li, X.Y.: Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 51, 1442–1455 (2014)

    Article  Google Scholar 

  123. Gao, Y., Zhao, B.S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys. Stat. Sol. (b) 243, 4007–4019 (2006)

    Article  Google Scholar 

  124. Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Mod. 33, 3382–3391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  125. Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92, 4334–4353 (2012)

    Article  Google Scholar 

  126. Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)

    Article  Google Scholar 

  127. Wang, T.C., Han, X.L.: Crack problems of piezoelectric materials. Acta Mech. Solida Sin. 12, 95–105 (1999)

    Google Scholar 

  128. Fang, D.N., Soh, A.K., Liu, J.X.: Electromechanical deformation and fracture of piezoelectric-ferroelectric materials. Acta Mech. Sin. 17, 193–213 (2001)

    Article  Google Scholar 

  129. Gao, C.F., Balke, H.: Green’s functions of internal electrodes between two dissimilar piezoelectric media. Appl. Math. Mech. Eng. Ed. 26, 234–241 (2005)

    Article  MATH  Google Scholar 

  130. Li, Q., Chen, Y.H.: Analysis of crack-tip singularities for an interfacial permeable crack in metal-piezoelectric bimaterials. Acta Mech. Solida Sin. 20, 247–257 (2007)

    Article  Google Scholar 

  131. Li, Q., Chen, Y.H.: Analysis of a permeable interface crack in elastic dielectric-piezoelectric bimaterials. Acta Mech. Sin. 23, 681–687 (2007)

    Article  MATH  Google Scholar 

  132. Wang, B.L., Noda, N., Han, J.C., Du, S.Y.: A penny-shaped crack in a transversely isotropic piezoelectric layer. Eur. J. Mech. A Solids 20, 997–1005 (2001)

    Article  MATH  Google Scholar 

  133. Yang, J.H., Lee, K.Y.: Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mech. 148, 187–197 (2001)

    Article  MATH  Google Scholar 

  134. Li, X.F., Lee, K.Y.: Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer. J. Mech. Phys. Solids 52, 2079–2100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  135. Wang, B.L., Sun, Y.G., Zhu, Y.: Fracture of a finite piezoelectric layer with a penny-shaped crack. Int. J. Fract. 172, 19–39 (2011)

  136. Zhao, M.H., Li, D.X., Shen, Y.P.: Interfacial crack analysis in three-dimensional transversely isotropic bi-materials by boundary integral equation method. Appl. Math. Mech. Eng. Ed. 26, 1539–1546 (2005)

    Article  MATH  Google Scholar 

  137. Wang, J.H., Chen, C.Q., Lu, T.J.: Indentation response of piezoelectric films. J. Mech. Phys. Solids 56, 3331–3351 (2008)

    Article  MATH  Google Scholar 

  138. Wu, Y.F., Yu, H.Y., Chen, W.Q.: Mechanics of indentation for piezoelectric thin films on elastic substrate. Int. J. Solids Struct. 49, 95–110 (2012)

    Article  Google Scholar 

  139. Wu, Y.F., Yu, H.Y., Chen, W.Q.: Indentation responses of piezoelectric layered half-space. Smart Mater. Struct. 22, 015007 (2013)

    Article  Google Scholar 

  140. Fabrikant, V.I.: Application of the generalized images method to contact problems for a transversely isotropic elastic layer. J. Strain Anal. 39, 55–70 (2004)

    Article  Google Scholar 

  141. Fabrikant, V.I.: Tangential contact problem for a transversely isotropic elastic layer bonded to a rigid foundation. Math. Proc. Camb. Philos. Soc. 138, 173–191 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  142. Fabrikant, V.I.: Elementary solution of contact problems for a transversely isotropic elastic layer bonded to a rigid foundation. Z. Angew. Math. Phys. 57, 464–490 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  143. Fabrikant, V.I.: Solution of contact problems for a transversely isotropic elastic layer bonded to an elastic half-space. Proc. IMechE Part C. J. Mech. Eng. Sci. 223, 2487–2499 (2009)

    Article  Google Scholar 

  144. Fabrikant, V.I.: Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space. Arch. Appl. Mech. 81, 957–974 (2011)

    Article  MATH  Google Scholar 

  145. Fabrikant, V.I.: Contact problems for several transversely isotropic elastic layers on a smooth elastic half-space. Meccanica 46, 1239–1263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  146. Fabrikant, V.I.: Tangential contact problems for several transversely isotropic elastic layers bonded to an elastic foundation. J. Eng. Math. 81, 93–126 (2013)

    Article  MathSciNet  Google Scholar 

  147. Fabrikant, V.I.: Generalized method of images in the crack analysis. Int. J. Eng. Sci. 35, 1159–1184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  148. Hu, K.Q., Zhong, Z., Jin, B.: Electroelastic intensification near anti-plane crack in a functionally gradient piezoelectric ceramic strip. Acta Mech. Solida Sin. 16, 197–204 (2003)

    Google Scholar 

  149. Feng, W.J., Li, X.G., Wang, S.D.: Torsional impact response of a penny-shaped crack in a functional graded strip. Appl. Math. Mech. Eng. Ed. 25, 1398–1404 (2004)

    Article  MATH  Google Scholar 

  150. Hao, T.H.: Crack tip field in functionally gradient material with exponential variation of elastic constants in two directions. Acta Mech. Sin. 21, 601–607 (2005)

    Article  MATH  Google Scholar 

  151. Volkov, S., Aizikovich, S., Wang, Y.S., Fedotov, I.: Analytical solution of axisymmetric contact problem about indentation of a circular indenter into a soft functionally graded elastic layer. Acta Mech. Sin. 29, 196–201 (2013)

    Article  MathSciNet  Google Scholar 

  152. Ma, J., Ke, L.L., Wang, Y.S.: Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. Int. J. Solids Struct. 51, 2791–2806 (2014)

    Article  Google Scholar 

  153. Sankar, T.S., Fabrikant, V.I.: Asymmetric contact problem including wear for nonhomogeneous half space. J. Appl. Math. Mech. 49, 43–46 (1982)

    MathSciNet  MATH  Google Scholar 

  154. Fabrikant, V.I., Sankar, T.S.: On contact problems in an inhomogeneous half-space. Int. J. Solids Struct. 20, 159–166 (1984)

    Article  MATH  Google Scholar 

  155. Li, X.Y., Chen, W.Q., Wang, H.Y., Wang, G.D.: Crack tip plasticity of a penny-shaped Dugdale crack in a power-law graded elastic infinite medium. Eng. Fract. Mech. 88, 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  156. Martin, P.A.: Exact solution of some integral equations over a circular disc. J. Integral Equ. Appl. 18, 39–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  157. Tao, F.M., Tang, R.J.: The crack-inclusion interaction and the analysis of singularity for the horizontal contact. Appl. Math. Mech. Eng. Ed. 22, 547–556 (2001)

    Article  MATH  Google Scholar 

  158. Zhong, Z.: Analysis of a partially debonded elliptic inhomogeneity in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 25, 445–457 (2004)

    Article  MATH  Google Scholar 

  159. Hu, Y.T., Li, G.Q., Jiang, S.N., Hu, H.P., Yang, J.S.: Interaction of electric charges in a piezoelectric with rigid external cracks. Appl. Math. Mech. Eng. Ed. 26, 996–1006 (2005)

    Article  MATH  Google Scholar 

  160. Fang, Q.H., Liu, Y.W.: Elastic interaction between wedge disclination dipole and internal crack. Appl. Math. Mech. Eng. Ed. 27, 1239–1247 (2006)

    Article  MATH  Google Scholar 

  161. Zhou, Z.G., Wang, B.: Basic solution of two parallel non-symmetric permeable cracks in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 28, 417–428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  162. Xiao, W.S., Xie, C., Liu, Y.W.: Interaction between heat dipole and circular interfacial crack. Appl. Math. Mech. Eng. Ed. 30, 1221–1232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  163. Xu, C.H., Qin, T.Y., Yuan, L., Noda, N.A.: Analysis of multiple interfacial cracks in three-dimensional bimaterials using hypersingular integro-differential equation method. Appl. Math. Mech. Eng. Ed. 30, 293–301 (2009)

    Article  MATH  Google Scholar 

  164. Karapetian, E., Hanson, T.: Crack opening displacements and stress intensity factors caused by a concentrated load outside a circular crack. Int. J. Solids Struct. 31, 2035–2052 (1994)

    Article  MATH  Google Scholar 

  165. Karapetian, E., Kachanov, M.: Three-dimensional interactions of a circular crack with dipoles, centers of dilatation and moments. Int. J. Solids Struct. 33, 3951–3967 (1996)

    Article  MATH  Google Scholar 

  166. Kachanov, M., Karapetian, E.: Three-dimensional interactions of a half-plane crack with point forces, dipoles and moments. Int. J. Solids Struct. 34, 4101–4125 (1997)

    Article  MATH  Google Scholar 

  167. Karapetian, E., Kachanov, M.: Green’s functions for the isotropic or transversely isotropic space containing a circular crack. Acta Mech. 126, 169–187 (1998)

    Article  MATH  Google Scholar 

  168. Xiao, Z.M., Fan, H., Zhang, T.L.: Stress intensity factors of two skew-parallel penny-shaped cracks in a 3-D transversely isotropic solid. Mech. Mater. 20, 261–272 (1995)

    Article  Google Scholar 

  169. Zhan, S.G., Wang, T.C.: Interactions of penny-shaped cracks in three- dimensional solids. Acta Mech. Sin. 22, 341–353 (2006)

    Article  MATH  Google Scholar 

  170. Fabrikant, V.I.: Interaction of an arbitrary force with a flexible punch or with a penny-shaped crack. Q. J. Mech. Appl. Math. 50, 303–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  171. Hou, P.F., Ding, H.J., Guan, F.L.: Circular crack in a transversely isotropic piezoelectric space under point forces and point charges. Acta Mech. Sin. 18, 159–169 (2002)

    Article  Google Scholar 

  172. Hou, P.F., Pan, X.P., Ding, H.J.: Three-dimensional interactions of a half-plane crack in a transversely isotropic piezoelectric space with resultant sources. Acta Mech. Solida Sin. 18, 265–271 (2005)

    Google Scholar 

  173. Hou, P.F., Ding, H.J., Leung, A.Y.T.: Three-dimensional interactions of circular crack in transversely isotropic piezoelectric space with resultant sources. Appl. Math. Mech. Eng. Ed. 27, 1439–1449 (2006)

    Article  MATH  Google Scholar 

  174. Goryacheva, I.G.: Mechanics of discrete contact. Tribol. Int. 39, 381–386 (2006)

    Article  Google Scholar 

  175. Bedoidze, M.V., Pozharskii, D.A.: The interaction of punches on a transversely isotropic half-space. J. Appl. Math. Mech. 78, 409–414 (2014)

    Article  MathSciNet  Google Scholar 

  176. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses—Advanced Theory and Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  177. Williams, W.E.: A solution of the steady-state thermoelastic equations. Z. Angew. Math. Phys. 12, 452–455 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  178. Barber, J.R.: Elasticity, 3rd revised ed. Springer, Dordrecht (2010)

  179. Chen, W.Q., Ding, H.J., Ling, D.S.: Thermoelastic field of a transversely isotropic elastic medium containing a penny-shaped crack: exact fundamental solution. Int. J. Solids Struct. 41, 69–83 (2004)

    Article  MATH  Google Scholar 

  180. Chen, W.Q.: On the general solution for piezothermoelasticity for transverse isotropy with application. J. Appl. Mech. 67, 705–711 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  181. Chen, W.Q., Lim, C.W., Ding, H.J.: Point temperature solution for a penny- shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Eng. Anal. Bound. Elem. 29, 524–532 (2005)

    Article  MATH  Google Scholar 

  182. Barber, J.R.: Steady-state thermal stresses caused by an imperfectly conducting penny-shaped crack in an elastic solid. J. Therm. Stresses 3, 77–83 (1980)

    Article  Google Scholar 

  183. Shen, S.P., Kuang, Z.B.: Interface crack in bi-piezothermoelastic media. Acta Mech. Solida Sin. 9, 13–26 (1996)

    Google Scholar 

  184. Xu, C.H., Qin, T.Y., Hua, Y.L.: Singular integral equations and boundary element method of cracks in thermally stressed planar solids. Appl. Math. Mech. Eng. Ed. 21, 399–406 (2000)

    Article  MATH  Google Scholar 

  185. Niraula, O.P., Wang, B.L.: A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech. 187, 151–168 (2006)

    Article  MATH  Google Scholar 

  186. Niraula, O.P., Wang, B.L.: Thermal stress analysis in magneto-electro-thermo-elasticity with a penny-shaped crack under uniform heat flow. J. Therm. Stresses 29, 423–437 (2006)

    Article  Google Scholar 

  187. Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in transversely isotropic magneto-electro-thermo-elastic medium subjected to uniform symmetric heat flux. Int. J. Solids Struct. 51, 1792–1808 (2014)

    Article  Google Scholar 

  188. Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in an infinite linear transversely isotropic medium subjected to uniform anti-symmetric heat flux: Closed-form solution. Eur. J. Mech. A Solids 47, 254–270 (2014)

    Article  MathSciNet  Google Scholar 

  189. Li, X.Y., Chen, W.Q., Wang, H.Y.: General steady state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. Eur. J. Mech. A Solids 29, 317–326 (2010)

    Article  Google Scholar 

  190. Li, X.Y., Wu, J., Chen, W.Q., Wang, H.Y., Zhou, Z.Q.: Exact and complete fundamental solutions for penny-shaped crack in an infinite transversely isotropic thermoporoelastic medium: Mode I problem. Struct. Eng. Mech. 42, 313–334 (2012)

    Article  Google Scholar 

  191. Barber, J.R.: Contact problems involving a cooled punch. J. Elasticity 8, 409–423 (1978)

    Article  MATH  Google Scholar 

  192. Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids. Struct. 50, 1108–1119 (2013)

    Article  Google Scholar 

  193. Karapetian, E., Kalinin, S.V.: Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes. J. Appl. Phys. 113, 187201 (2013)

    Article  Google Scholar 

  194. Yang, J., Jin, X.Y.: Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J. Appl. Phys. 115, 083516 (2014)

    Article  Google Scholar 

  195. Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)

    Article  Google Scholar 

  196. Li, X.Y.: Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional quasicrystal under thermal loading. Proc. R. Soc. A 469, 20130023 (2013)

    Article  Google Scholar 

  197. Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376, 2004–2009 (2012)

    Article  MATH  Google Scholar 

  198. Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37, 363–379 (2014)

    Article  Google Scholar 

  199. Chen, W.Q., Shioya, T., Ding, H.J.: Integral equations for mixed boundary value problem of a piezoelectric half-space and the applications. Mech. Res. Commun. 26, 583–590 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  200. Hou, P.F., Zhou, X.H., He, Y.J.: Green’s functions for a semi-infinite transversely isotropic piezothermoelastic material. Smart Mater. Struct. 16, 1915–1923 (2007)

    Article  Google Scholar 

  201. Hou, P.F., Luo, W., Leung, A.Y.T.: A point heat source on the surface of a semi-infinite transversely isotropic piezothermoelastic material. J. Appl. Mech. 75, 011013 (2008)

    Article  Google Scholar 

  202. Hou, P.F., Leung, A.Y.T., Ding, H.J.: A point heat source on the surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Eng. Sci. 46, 273–285 (2008)

    Article  MATH  Google Scholar 

  203. Hou, P.F., Yi, T., Leung, A.Y.T.: Green’s functions for semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Appl. Electromagnet. Mech. 29, 83–100 (2009)

    Google Scholar 

  204. Hou, P.F., Leung, A.Y.T.: Three-dimensional Green’s functions for two-phase transversely isotropic piezothermoelastic media. J. Intell. Mater. Syst. Struct. 20, 11–21 (2009)

    Article  Google Scholar 

  205. Hou, P.F., Li, Q.H., Jiang, H.Y.: Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications II: Green’s functions for two-phase infinite body. J. Therm. Stresses 36, 851–867 (2013)

    Article  Google Scholar 

  206. Hou, P.F., Zhao, M., Ju, J.W.: Three-dimensional Green’s functions for transversely isotropic thermoporoelastic bimaterials. J. Appl. Geophys. 95, 36–46 (2013)

    Article  Google Scholar 

  207. Hou, P.F., Zhao, M., Tong, J., Fu, B.: Three-dimensional steady-state Green’s functions for fluid-saturated, transversely isotropic, poroelastic bimaterials. J. Hydrol. 496, 217–224 (2013)

    Article  Google Scholar 

  208. Hou, P.F., Yuan, K., Tian, W.: Three-dimensional Green’s functions for a fluid and pyroelectric two-phase material. Appl. Math. Comput. 249, 303–319 (2014)

    MathSciNet  Google Scholar 

  209. Hou, P.F., Li, Z.S., Zhang, Y.: Three-dimensional quasi-static Green’s function for an infinite transversely isotropic pyroelectric material under a step point heat source. Mech. Res. Commun. 62, 66–76 (2014)

    Article  Google Scholar 

  210. Karapetian, E., Kalinin, S.V.: Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J. Appl. Phys. 110, 052020 (2011)

    Article  Google Scholar 

  211. Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  212. Fischer-Cripps, A.C.: Introduction to Contact Mechanics, 2nd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  213. Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)

    Article  Google Scholar 

  214. Sridhar, S., Giannakopoulos, A.E., Suresh, S., Ramamurty, U.: Electrical response during indentation of piezoelectric materials: a new method for material characterization. J. Appl. Phys. 85, 380–387 (1999)

    Article  Google Scholar 

  215. Ramamurty, U., Sridhar, S., Giannakopoulos, A.E., Suresh, S.: An experimental study of spherical indentation on piezoelectric materials. Acta Mater. 47, 2417–2430 (1999)

    Article  Google Scholar 

  216. Sridhar, S., Giannakopoulos, A.E., Suresh, S.: Mechanical and electrical responses of piezoelectric solids to conical indentation. J. Appl. Phys. 87, 8451–8456 (2000)

    Article  Google Scholar 

  217. Giannakopoulos, A.E.: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409–416 (2000)

    Article  MATH  Google Scholar 

  218. Giannakopoulos, A.E., Parmaklis, A.Z.: The contact problem of a circular rigid punch on piezomagnetic materials. Int. J. Solids Struct. 44, 4593–4612 (2007)

    Article  MATH  Google Scholar 

  219. Kalinin, S.V., Bonnell, D.A.: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002)

    Article  Google Scholar 

  220. Rar, A., Pharr, G.M., Oliver, W.C., Karapetian, E., Kalinin, S.V.: Piezoelectric nanoindentation. J. Mater. Res. 21, 552–556 (2006)

    Article  Google Scholar 

  221. Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N.: Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007)

    Article  Google Scholar 

  222. Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys. Rev. B 76, 040511 (2007)

    Article  Google Scholar 

  223. Karapetian, E., Kachanov, M., Kalinin, S.V.: Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J. Mech. Phys. Solids 57, 673–688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  224. Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int. J. Eng. Sci. 47, 221–229 (2009)

    Article  Google Scholar 

  225. Pan, K., Liu, Y.Y., Xie, S.H., Liu, Y.M., Li, J.Y.: The electromechanics of piezoresponse force microscopy for a transversely isotropic piezoelectric medium. Acta Mater. 61, 7020–7033 (2013)

    Article  Google Scholar 

  226. Kalinin, S.V., Mirman, B., Karapetian, E.: Relationship between direct and converse piezoelectric effect in a nanoscaled electromechanical contact. Phys. Rev. B 76, 212102 (2007)

    Article  Google Scholar 

  227. Prashanthi, K., Mandal, M., Duttagupta, S.P., Ramgopal Rao, V., Pant, P., Dhale, K., Palkar, V.R.: Nanomechanical characterization of multiferroic thin films for micro-electromechanical systems. Int. J. Nanosci. 10, 1039–1042 (2011)

    Article  Google Scholar 

  228. Nelson, B.A., King, W.P.: Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev. Sci. Instrum. 78, 023702 (2007)

    Article  Google Scholar 

  229. Nikiforov, M.P., Jesse, S., Morozovska, A.N., Eliseev, E.A., Germinario, L.T., Kalinin, S.V.: Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology 20, 395709 (2009)

    Article  Google Scholar 

  230. Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V.: Real space mapping of Li-Ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420–3425 (2010)

    Article  Google Scholar 

  231. Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S.: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011)

    Article  Google Scholar 

  232. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  233. Chan, E.P., Hu, Y.H., Johnson, P.M., Suo, Z.G., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)

    Article  Google Scholar 

  234. Yang, L., Tu, Y.S., Tan, H.L.: Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment. Appl. Math. Mech. Eng. Ed. 33, 829–844 (2014)

    MATH  Google Scholar 

  235. Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. R. Soc. Lond. A 460, 507–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  236. Borodich, F.M.: The Hertz-type and adhesive contact problems for depth- sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)

    Article  Google Scholar 

  237. Rogowski, B., Kaliński, W.: The adhesive contact problem for a piezoelectric half-space. Int. J. Press. Vessels Pip. 84, 502–511 (2007)

    Article  Google Scholar 

  238. Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  239. Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space, Part II: Solutions of the integral equations. J. Appl. Mech. 66, 621–630 (1999)

    Article  Google Scholar 

  240. Rahman, M.: The normal shift of a rigid elliptical disk in a transversely isotropic solid. Int. J. Solids Struct. 38, 3965–3977 (2001)

    Article  MATH  Google Scholar 

  241. Kaczyński, A.: On 3D anticrack problems in a transversely isotropic solid. Eur. J. Mech. A Solids 43, 142–151 (2014)

    Article  MathSciNet  Google Scholar 

  242. Kaczyński, A.: Thermal stress analysis of a three-dimensional anticrack in a transversely isotropic solid. Int. J. Solids Struct. 51, 2382–2389 (2014)

    Article  Google Scholar 

  243. Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.L.: Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55, 4015–4039 (2007)

  244. Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X., Wang, T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–81 (2011)

  245. Chen, W.Q.: Surface effect on Bleustein–Gulyaev wave in a piezoelectric half-space. Theor. Appl. Mech. Lett. 1, 041001 (2011)

    Article  Google Scholar 

  246. Qin, J., Qu, S.X., Feng, X., Huang, Y.G., Xiao, J.L., Hwang, K.C.: A numerical study of indentation with small spherical indenters. Acta Mech. Solida Sin. 22, 18–26 (2009)

    Article  Google Scholar 

  247. Wei, Y.G., Wang, X.Z., Zhao, M.H., Cheng, C.M., Bai, Y.L.: Size effect and geometrical effect of solids in micro-indentation test. Acta Mech. Sin. 19, 59–70 (2003)

    Article  Google Scholar 

  248. Zhou, H., Zhang, H.L., Pei, Y.M., Chen, H.S., Zhao, H.W., Fang, D.N.: Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale. Appl. Phys. Lett. 106, 081904 (2015)

    Article  Google Scholar 

  249. Zhao, M.H., Cheng, C.J., Liu, Y.J., Liu, G.N., Zhang, S.S.: The method of analysis of crack problem in three-dimensional non-local elasticity. Appl. Math. Mech. Eng. Ed. 20, 469–475 (1999)

    Article  MATH  Google Scholar 

  250. Dai, T.M.: The mixed boundary-value problem for non-local asymmetric elasticity. Appl. Math. Mech. Eng. Ed. 21, 27–32 (2000)

    Article  MATH  Google Scholar 

  251. Willis, J.R.: Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 14, 163–176 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  252. Willis, J.R.: The stress field around an elliptical crack in an anisotropic elastic medium. Int. J. Eng. Sci. 6, 253–263 (1968)

    Article  MATH  Google Scholar 

  253. Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Effect of anisotropy on thermoelastic contact problem. Appl. Math. Mech. Eng. Ed. 29, 501–510 (2008)

    Article  MATH  Google Scholar 

  254. Fabrikant, V.I.: Non-traditional contact problem for transversely isotropic half-space. Q. J. Mech. Appl. Math. 64, 151–170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  255. Fabrikant, V.I.: Non-traditional crack problem for transversely-isotropic body. Eur. J. Mech. A Solids 30, 902–912 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  256. Sevostianov, I., Paulo da Silva, U., Aguiar, A.R.: Green’s function for piezoelectric 622 hexagonal crystals. Int. J. Eng. Sci. 84, 18–28 (2014)

    Article  Google Scholar 

  257. Li, X.Y., Wang, M.Z.: Hertzian contact of anisotropic piezoelectric bodies. J. Elasticity 84, 153–166 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  258. Tian, J.Y., Xie, Z.M.: Dynamic contact stiffness of vibrating rigid sphere contacting semi-infinite transversely isotropic viscoelastic solid. Acta Mech. Solida Sin. 21, 580–588 (2008)

    Article  Google Scholar 

  259. Zhang, T.Y.: Effects of static electric field on the fracture behavior of piezoelectric ceramics. Acta Mech. Sin. 18, 537–550 (2002)

    Article  Google Scholar 

  260. Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)

    MATH  Google Scholar 

  261. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)

    Book  MATH  Google Scholar 

  262. Wang, Q.M., Mohan, A.C., Oyen, M.L., Zhao, X.H.: Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mech. Sin. 30, 20–27 (2014)

    Article  MathSciNet  Google Scholar 

  263. Touzaline, A.: Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials. Appl. Math. Mech. Eng. Ed. 31, 623–634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant 11321202) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant  20130101110120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qiu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WQ. Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling. Acta Mech. Sin. 31, 601–626 (2015). https://doi.org/10.1007/s10409-015-0509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0509-3

Keywords

Navigation